
LPL Tutorial
Tony Hürlimann
info@matmod.ch

November 12, 2023

Abstract

This paper contains three parts
1. A set of tutor models, models that guide you through several aspects of LPL modeling

from a simple production model to more complex once. Successively, other features
are shown in the models to illustrate the syntax of the language LPL. By aware that
some models need Excel or a database to be installed before running correctly. Oth-
erwise all can be run on the Internet without installing LPL locally.

2. A set of “learn” examples which are model fragments explaining various aspects or
functions of the LPL language, they are also linked in the reference manual to explain
various concepts of the language.

3. Some drawing examples explaining the drawing library of LPL. LPL contains a library
that can generate SVG graphs. They can be interpreted by any browser directly.

This text was automatically generated using LPL’s own documentation facility, and illus-
trates itself an important feature of LPL, namely the “model documentation tool”. Going
through the examples together with loading and running them using lplw.exe or the Internet
interface gives you a first overview of the capacity of the modeling system LPL. The reader
is asked not only to read this tutorial but also to load and run all models. It is the most
efficient way to go into the modeling language. Enjoy it!

1

Contents
1 A Simple Production Model (tutor01) 7

2 Names and Comments (tutor02) 11

3 Using Indices I (tutor03) 13

4 Using Indices II (tutor04) 17

5 Using Indices III (tutor05) 19

6 Data Include Files (tutor06) 21

7 Reading text files (tutor07) 23

8 Reading data from Excel I (tutor07a) 26

9 Reading data from Excel II (tutor07a1) 29

10 Reading data from Database (tutor07b) 31

11 Read consecutive blocks in Text files (tutor07d) 35

12 Writing to text files (output locally only) (tutor08) 37

13 Writing data to Excel (locally only) (tutor08a1) 40

14 Writing to databases (output locally only) (tutor08b) 41

15 Creating a Report (report locally only) (tutor08c) 44

16 Writing With Formatted Masks (tutor08d) 47

17 Write-Format Examples (tutor08e) 49

18 Submodels (output locally only) (tutor09) 51

19 Sparse Tables (tutor10) 53

20 Predefined Functions (tutor11) 55

21 Index Operators (tutor12) 57

22 Expression Evaluation (tutor13) 59

23 Goal Programming (tutor14) 61

24 Loop Programming (tutor15) 63

25 Logical Constraints (tutor16) 65

26 Some Basic Expressions / Writes (learn01) 67

2

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor01
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor02
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor03
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor04
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor05
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor06
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07a1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07b
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07d
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08a1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08b
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08c
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08d
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08e
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor09
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor10
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor11
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor12
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor13
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor14
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor15
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor16
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn01

27 Basic Indexed Expressions/Tables (learn01a) 68

28 The Addm function (learn01b) 69

29 Some Math and Boolean Functions (learn02) 70

30 Logical Operators (learn02a) 71

31 The within and in Operators (learn03) 72

32 Some String Compare Operations (learn04) 73

33 Index options, and wrap around function (learn05) 74

34 Sort function (learn06) 75

35 Date/Time Type (learn07) 76

36 Documenting Models (learn08) 77

37 Call Submodel within Solver (Gurobi) (learn10) 80

38 Sparsity Check (learn11) 81

39 Reading Relations (learn12) 82

40 A Small Data Cube I (learn13) 83

41 A Small Data Cube II (learn13a) 84

42 Multiple bounds of variables (learn14) 85

43 Submodels and Encapsulation (learn15) 86

44 Again, some non-trivial relations (learn16) 88

45 Expressions and Constraints (learn17) 89

46 GetValue Function (learn20) 90

47 create a SQL script, test sparcity (locally only) (learn21) 91

48 GetAttr Function (two parameters) (learn22) 92

49 GetAttr Function (one parameter) (learn22a) 93

50 GetName Function (learn23) 94

51 GetParams Function (learn24) 95

52 Split Function (learn25) 96

53 String Functions (learn26) 97

3

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn01a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn01b
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn02
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn02a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn03
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn04
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn05
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn06
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn07
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn08
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn10
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn11
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn12
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn13
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn13a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn14
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn15
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn16
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn17
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn20
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn21
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn22
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn22a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn23
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn24
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn25
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn26

54 String Operations and Format (learn26a) 98

55 Functions NextFocus, NextPosition (learn27) 99

56 Multiple Snapshots (learn29) 100

57 Show Graph.Component (learn30) 101

58 Show Graph.Mincut function (learn31) 102

59 Show Graph.MStree (Minimal Spanning Tree) (learn32) 103

60 Read Multiple Snapshots (learn33) 104

61 Freeze function (learn34) 106

62 function En(), El() (learn35) 107

63 Show Graph.Bfs (learn36) 108

64 Show Graph.SPath (shortest path) (learn37) 109

65 Sl function (goal programming) (learn39) 110

66 Parameterized Calling of Submodels (learn40) 112

67 A Model with Parameters I (learn41) 114

68 A Model with Parameters II (learn42) 116

69 Pivot Table (learn43) 117

70 Colored Report (learn44) 118

71 Circular Time Lag Operator (learn45) 119

72 Function xP (learn46) 120

73 A logical constraint (learn47) 121

74 Run some code inside a constraint (learn48) 122

75 Queue and Map data structure (learn49) 123

76 Greatest Common Divider (learn51) 124

77 Topological Sorting (learn52) 125

78 Reading various data sets (learn53) 126

79 How to call a OS function (learn54) 127

80 Draw Lines/Opacity (xDrawAll) 128

4

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn26a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn27
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn29
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn30
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn31
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn32
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn33
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn34
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn35
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn36
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn37
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn39
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn40
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn41
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn42
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn43
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn44
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn45
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn46
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn47
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn48
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn49
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn51
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn52
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn53
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn54
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawAll

81 Use arc path (xDrawArcPath) 130

82 Drawing Circles (xDrawCircle) 131

83 A Quadratic Constraint (xDrawCircle1) 132

84 Show Color Numbers in LPL (xDrawColors) 133

85 Draw Filters (xDrawFilters) 134

86 Show radial gradient (xDrawGrad0) 136

87 Show linear gardient (xDrawGrad1) 137

88 Show figures with gradient (xDrawGrad2) 138

89 Check Points inside a Polygon (xDrawInside) 139

90 Check Two Segments intersect (xDrawIntersect) 140

91 Drawing Lines (xDrawLine) 142

92 Draw a path (xDrawPath) 143

93 Draw a pattern (xDrawPattern) 144

94 Load Picture from File (xDrawPict) 145

95 Some drawing functions (xDrawPict1) 146

96 Puzzle 64=65 (xDrawPuzzle) 147

97 Draw rectangles (xDrawRect) 150

98 Draw.Scale Function (xDrawScale) 152

99 Drawing Text (xDrawText) 153

100Drawing a TextPath (xDrawTextPath) 154

101Draw a Text on a Path (xDrawTPath) 155

102Show transformations (xDrawTrans1) 156

103Draw Penrose Triangle (xDrawxPenrose) 157

104Draw Sierpinski Triangles (xDrawxSierpinski) 158

105 Draw a colored spiral (xDrawxSpiral) 159

106 A XY-plot (xDrawXY) 160

107 A XY-Function-plot (xDrawXY1) 161

5

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawArcPath
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawCircle
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawCircle1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawColors
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawFilters
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawGrad0
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawGrad1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawGrad2
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawInside
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawIntersect
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawLine
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPath
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPattern
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPict
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPict1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPuzzle
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawRect
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawScale
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawText
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawTextPath
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawTPath
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawTrans1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawxPenrose
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawxSierpinski
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawxSpiral
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawXY
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawXY1

List of Figures
1 The Feasible Space (grey) . 8
2 Data in Excel Sheet . 27
3 Data in Excel Sheet (“free style”) . 29
4 Data in the database . 32
5 Table HoursTable1 in the database . 33
6 Data in Excel Sheet (“free style”) . 40
7 The generated Database . 41
8 The generated Database . 45
9 Fast Report Template Page . 46
10 The Solution DAG annd the its Longest Path (red) 125
11 Output . 129
12 Output . 130
13 Output . 131
14 The Solution . 132
15 Output . 133
16 Output . 135
17 Output . 136
18 Output . 137
19 Output . 138
20 Output . 139
21 Output . 141
22 Output . 142
23 Output . 143
24 Output . 144
25 Output . 145
26 Output . 146
27 64

?
= 65 . 147

28 169
?
= 168 . 149

29 25
?
= 24 . 149

30 Output . 151
31 Output . 152
32 Output . 153
33 Output . 154
34 Output . 155
35 Output . 156
36 Penrose Triangle . 157
37 Sierpinski Triangle . 158
38 Colored Spiral . 159
39 Output . 160
40 XY-Function-Graph . 161

6

1 A Simple Production Model (tutor01)
—- Run LPL Code , HTML Document –
Problem: [[This part of the documentation is intended to briefly explain the problem.]] A firm
produces two type of robots called Marie and Jules. Three production steps must be carried out:

1. Production of the components: It takes 5 hours for each robot Marie and Jules, with a
total capacity of 350 hours per week,

2. Mounting (capacity = 480): It takes 4 hours for mounting one robot of type Marie and 8
hours for one robot of type Jules,

3. Testing (capacity = 300): It taks 6 hours for one Marie and 2 hours for one Jules.
The revenue for Marie is $300 and for Jules $200. There are already 20 robots of type Marie

and 15 Jules ordered. How many robots of each type can be produced per week, if the firm wants
to maximize the selling revenue (costs are not considered in this simple problem)? ([2]).

Modeling Steps

[[This part of the documentation explains how the problem can be translated into a mathematical
model.]]

1. Let’s introduce two variables: 𝑥 and 𝑦 for the quantity (per week) of the two types of robots
to be produced.

2. The components-step has a capacity of 350 hours per week. A unit of robot Marie takes
5 hours, a robot Jules also takes 5 hours. Hence we have (the component capacity per
week):

5𝑥 + 5𝑦 ≤ 350

3. The mounting-step has a capacity of 480 hours per week. A robot Marie takes 4 hours, a
robot Jules takes 8 hours. Therefore:

4𝑥 + 8𝑦 ≤ 480

4. The testing-step has a capacity of 300 hours per week. A robot Marie takes 6 hours, a
robot Jules takes 2 hours. Therefore:

6𝑥 + 2𝑦 ≤ 300

5. At least 20 of type Marie and 15 of type Jules must be produced, hence:
𝑥 ≥ 20, and 𝑥 ≥ 15

6. Maximizing the revenue is :
max 300𝑥 + 200𝑦

7

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor01
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor01
https://matmod.ch/lpl/HTML/tutor01.html

The complete problem to solve is then as follows:
max 300𝑥 + 200𝑦
subject to 5𝑥 + 5𝑦 ≤ 350

4𝑥 + 8𝑦 ≤ 300
6𝑥 + 2𝑦 ≤ 300
𝑥 ≥ 20 𝑦 ≥ 15

Further Comments: In a graphical way, the model represents the solution space as shown in
Figure 1. That is, every (𝑥, 𝑦)-point within the gray polygon represents a possible (feasible)
production that fulfills all constraints. All other points in the two-dimensional space violate at
least one of the constraints.

Figure 1: The Feasible Space (grey)

Listing 1: The Complete Model implemented in LPL [2]� �
model TUTOR01 "A Simple P r o d u c t i o n Model ";

variable x; y;
constraint
Component: 5*x + 5*y <= 350;
Mounting: 4*x + 8*y <= 480;
Testing: 6*x + 2*y <= 300;
Order1: x >= 20;
Order2: y >= 15;

maximize revenue: 300*x + 200*y;
Writep(x,y);

end� �
LPL Modeling Steps

8

[[The goal of this tutor is mainly to explain the syntax of LPL. It is done in this text block.]] A
LPL coded mathematical model [2] is very close to the usual mathematical notation. However,
we have some additional elements to code:

1. Each model coded in LPL begins with a keyword model and ends with end. (Keywords
are all in lowercase.)

2. The code consists of a sequence of entity declarations and statements.
3. Each entity declaration begins with a keyword and ends with a semicolon.
4. There are four kinds of entities in this model: model, variable, constraint, and

maximize. There is no need to repeat the keywords variable or constraint for
consecutive entities of the same type. Therefore variable introduces a list of two vari-
ables.

5. constraint introduces the model constraints. Each constraint then begins with a name.
Then follows a colon and the constraint expression.

6. The objective function, with the name revenue, begins with maximize.
7. Finally, we want to output the solution with the function Writep.

Solution: [[This part of the documentation is intended to give a short comment about the solution
of the model.]] The optimal solution is 𝑥 = 40 and 𝑦 = 30, which can be verified by Figure 1. It
means that neither the quantity of 𝑥 nor the quantity of 𝑦 can be increased without violating one
of the capacity constraint. (Well, we could augement the quantity of one variable at the expense
of the other quantity in this case, but the overall revenue will always be smaller.) On the other
hand, a reduction of one of the quantities is “suboptimal”: it reduces the revenue, and hence
it is no longer maximized.
Questions

1. Verify the solution of this model by running it. (Click the link TUTOR01 at the top of this
model description to run the model in the Internet.)

2. What happens if we extend the Mounting capacity from 480 to 500?
3. We must produce 45 unit of Jules instead of 15. How must the model be changed?
4. Besides the three production steps, there is a fourth task: “storage”. The company has a

storage capacity of 300 storage units and each Marie uses 7 and each Jules uses 2 storage
units. Add this requirements to the model and solve the problem again. Does the new task
influence the result?

Answers

1. Locally, run lplw.exe. Choose Menu “File/Open” and open the file tutor01.lpl.
Now choose Menu "Run/Run Model". Click the tab ’TABLE’, and then click on the red
node ’x’ in the left part in the LPL application. The value 40 is displayed. Now click
on the node ’y’, the value 30 is displayed. OR: Click the red link called “tutor01” at the
beginning of this section. The model opens in a Web browser. Click “Run and Solve”.

9

2. Nothing happens! The solution is still {𝑥 = 40, 𝑦 = 30}. This can be seen immediately
from Figure 1: The Mounting capacity is not the limiting resource. So, extending it,
does not change anything. To verify this, change 480 to 500 in the model and run it. Then
look at the values of the variables again.

3. Change the constraint Order2 to y >= 45. Then run the model again. The solution
indicates that 45 units of Jules are produced, but the number of Marie drops to 25, and the
overall revenue also drops to 16500. This can be seen by clicking the blue node revenue
while ’TABLE’ is the active tab.

4. The storage requirement can be added to the model by defining an additional constraint,
which is

constraint Storage: 7*x + 2*y <= 300;

The optimal solution is: 32 of Marie and 38 of Jules. Hence, the storage capacity limits
the production substantially.

10

2 Names and Comments (tutor02)
—- Run LPL Code , HTML Document –
Problem: This is exactly the same model as tutor01.lpl. Comments are added and some
simple expressions are used.

Listing 2: The Complete Model implemented in LPL [2]� �
model TUTOR02 " Names and Comments ";

/ ∗ The v a r i a b l e s a r e d e c l a r e d ∗ /
variable Marie,x " Number o f r o b o t s Marie ";
Jules,y " Number o f r o b o t s J u l e s ";
/ ∗ The c o n s t r a i n t s a r e l i s t e d ∗ /

constraint
Component: 5*x + 5*y <= 300+50 " C a p a c i t y o f comp p e r week ";
Mounting: 4*x + 8*y <= 500-20 " C a p a c i t y o f mount p e r week ";
Testing: 6*x + 2*y <= 30*10 " C a p a c i t y o f t e s t p e r week ";
Order1: x >= 200/10 " Al ready o r d e r e d o f Mar ies ";
Order2: y >= 4^1.9534 " Al ready o r d e r e d o f J u l e s ' ";
/ / Th i s f u n c t i o n i s maximized

maximize revenue: 300*x + 200*y;
−− F i n a l l y , t h r e e d a t a t a b l e s a r e w r i t t e n t o t h e NOM− f i l e

Writep(revenue, x, y);
end� �

LPL Modeling Steps

One can add comments, blanks or linefeeds everywhere between tokens (words). Furthermore,
1. An entity can have more than one name: Variable Marie, e.g., has two names: Marie

and x. This will be especially useful for indexes (see later). A second name is introduced
by adding it after the first name separated by a comma.

2. Multiline comments must be within / * and * /. They can be nested.
3. Short one-line comments begin with a double-dash (--) or with //. They end with an

end-of-line.
4. Expressions, like 300 + 50, can be used.
5. The 5 operators used here are: + (add), - (minus), * (times), / (divide) and

^ (power).
6. maximize calls a default solver library or program and reads the results back into the

LPL.
7. Writewrites the results to the so calledNOM-file (here the filename is: tutor02.nom).

In lplw.exe this file is loaded automatically after a run and shown in a new tab.

Questions

1. What happens if one adds two dashes just before the word Testing ?
2. Outcomment the line of Jules,y What happens?

11

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor02
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor02
https://matmod.ch/lpl/HTML/tutor02.html

3. What happens if we change the name Marie to Mary ?

Answers

1. The constraint Testing is commented and does not taking any effect when resolving the
problem. That is, the solution will be now : {𝑥 = 55, 𝑦 = 15}.

2. Running the model will stop at the first occurrence of 𝑦 and an error message is output at
the status line: Error: 516 Unknown identifier.

3. Nothing! The name is not used elsewhere in the model.

12

3 Using Indices I (tutor03)
—- Run LPL Code , HTML Document –
Problem: [[This model now introduces the very fundamental concept of index.]] Suppose, we
have 10 different types of robots (not just 2 like in the previous modelstutor01 andtutor02.
A way to deal with this is to introduce 10 different variables. However there is a more economical
way, that is, using indexes. In mathematical notation, one can write this as follows:

𝑥𝑖, with 𝑖 ∈ 𝐼 = {1…10}

In LPL syntax, a very similar notation is used:
set I := 1..10;
variable x{i in I};

In the same way, in mathematics, one used the summation notation to add all variables. The
“mounting robots” capacity constraint can be formulated as:

∑

𝑖∈𝐼
𝐻𝑀𝑖 ⋅ 𝑥𝑖 ≤ 4800

where 𝐻𝑀𝑖 is the time spent to mount a single robot type 𝑖, 4800 being the total capacity for
this production step. In LPL, again, this is formulated close to this notation as follows (note that
every constraint has a name in LPL, here Mounting, to identify it within in the LPL code):

Mounting: sum{i in I} HM[i] * x[i] <= 4800;

Listing 3: The Complete Model implemented in LPL [2]� �
model TUTOR03 " Using I n d i c e s I ";

set I := 1..10 "A s e t w i th 10 e l e m e n t s ";
integer variable x{i in I} " The number o f d i f f e r e n t t y p e o f r o b o t s ";
parameter HC{i in I} := [5 5 4 5 6 5 7 8 4 7] " Component t ime ";

HM{i in I} := [4 8 5 6 4 8 7 6 5 3] " Mounting t ime ";
HT{i in I} := [6 2 4 6 3 4 5 2 5 3] " T e s t i n g t ime ";
Ordered{i in I} := [20 15 7 6 5 8 9 8 7 5] " Q u a n t i t y o r d e r e d ";
Price{i in I} := [300 200 100 50 50 100 200 100 400 200];

constraint
Component: sum{i in I} HC[i] * x[i] <= 3500 " Component b u i l d i n g ";
Mounting: sum{i in I} HM[i] * x[i] <= 4800 " Mounting r o b o t s ";
Testing: sum{i in I} HT[i] * x[i] <= 3000 " T e s t i n g r o b o t s ";
Order{i in I}: x[i] >= Ordered[i] " Ordered ";

maximize revenue: sum{i in I} Price[i] * x[i] " Maximize t h e r e v e n u e ";
Writep(revenue, x, HC, HM, HT);

end� �
LPL Modeling Steps

The new elements in this model are set and the index-operator sum.
1. The set entity declares an index-set called 𝐼 . The index-set 𝐼 has 10 elements.

𝐼 = {1,… , 𝑛} , (𝑛 = 10)

2. variable introduces a variable list called x, which is indexed over 𝑖 ∈ 𝐼 . i is called an
index. This declares the 10 variables: x[1] ... x[10].

13

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor03
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor03
https://matmod.ch/lpl/HTML/tutor03.html

3. parameter introduces five data lists, all indexed over 𝐼 . (For example, HC[3] (which
is 4, the third data in the list) says how many hours it take to manufacture the components
for the third robot type 3.)

4. The data list is directly assigned to the parameters. Hence, we have Price[1]=300 and
Price[6]=100, for example. These data are data vectors.

5. Indexed items can be summed up with the sum operator. Hence,
HC[1]*x[1] + ... + HC[10]*x[10]

is written as: sum{i in I} HC[i]*x[i]. This is LPL’s notation for:
∑

𝑖∈{1…10}
𝐻𝐶𝑖 ⋅ 𝑥𝑖

6. Much like the summation through the sum operator, whole constraint-classes can be writ-
ten as indexed constraints. For example:

Order{i in I}: x[i] >= Ordered[i];

declares 10 constraints:
x[1] >= Ordered[1],
x[2] >= Ordered[2],
...

In mathematical notation, we would write this as follows:
𝑥𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑖 , ∀𝑖 ∈ 𝐼 = {1…10}

7. A Writep instruction can be used to write the results to the NOM-file which is the
result file by default. In this case, resulting tables are written to the file tutor03.nom.

Questions

1. Replace 1..10 by 1..11 in the set definition of I. What happens?
2. Change Price{i in I} to Price{i in J} in the price declaration. What hap-

pens?
3. Which step of the production (production of the components, mounting or testing) is lim-

iting the production? Is there a constraint that could be removed without changing the
final result?

4. The company optimized its testing procedure and can reduce the testing time by 10% for
each of the robot type. How does this affect the final result and why?

14

5. A market study shows that it is very unlikely to sell more than 50, 30, 40, 20, 15, 10, 60,
20, 17 and 10 units of the 10 robot types. Add the corresponding constraint and explain
why the result changes dramatically.

6. Instead of maximizing the total revenue only, we take the material costs into account too.
The material costs per type and unit are 120, 120, 20, 15, 9, 30, 10, 27, 270 and 20
respectively. Change the model in order to maximize the revenue.

7. Which type of robot generates the largest revenue? Use an indexed operator to calculate
the right answer directly in LPL.

8. Assume that a fourth production step is needed. What do you need to change in the model
and where do you see difficulties?

Answers

1. Running the model, the result is the same a s before. To really get 11 products one also
needs to exdend the data tables.

2. An error occurs, because J is not declared. Note, LPL is case-sensitive, hence, j and J
are two different names.

3. Add the three parameters after the minimizing as follows and a Writep statement:
parameter C:=sum{i in I} HC[i] * x[i];
parameter M:=sum{i in I} HM[i] * x[i];
parameter T:=sum{i in I} HT[i] * x[i];
Writep(C,M,T);

This calculates the used capacities. One can derive from these numbers that theComponent
and Testing process are at there maximal capacity limit, whereas the Mounting pro-
cess has a small quantity of capacity left. That means: if we increase the capacity of
Mounting, we can not produce more, since the limiting factors are Component and
Testing, not the Mounting.

4. The third constraint can easily be replaced by:
Testing: sum{i in I} HT[i]*0.9*x[i] <= 3000;

Running the model and checking the the parameters of the previous question shows, that
the testing capacity is no longer a limiting factor. This allows the company to increase the
revenue significantly.

5. We introduce a new parameter and add a new constraint as follows:
parameter Demand{i in I} := [50 30 40 20 15 10 60 20 17 10];
constraint Dem{i in I}: x[i] <= Demand[i];

It shows that the best strategy is to produce exactly the demanded amount. All the other
constraints are not limiting the production anymore and the final revenue is much lower
than before.

6. A new parameter is introduced and the objective function has to be adapted:
parameter Cost{i in I} := [120 120 20 15 9 30 10 27 270 20];
maximize revenue: sum{i in I} (Price[i]-Cost[i])*x[i];

15

7. The indexed operator used to answer this question is: argmax{i in I} A[i] where
A is a new parameter defined as: parameter A{i} := Price*x; The argmax
operator returns i if the value of the i-th element is the largest value in the list. We find
that the 9th robot generates the largest revenue.

8. We have to add a new parameter list containing the durations of the fourth step for each
model. Furthermore we have to add an additional constraint. With only four steps, this is
not a big deal. However, when having a lot of production steps, there exists a much better
solution, that will be presented in model tutor051.

1https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor05

16

https://matmod.ch/lpl/HTML/tutor05.html

4 Using Indices II (tutor04)
—- Run LPL Code , HTML Document –
Problem: This is the same model as tutor032 with some minor syntax differences (simplifica-
tions).

Listing 4: The Complete Model implemented in LPL [2]� �
model TUTOR04 " Using I n d i c e s I I ";

set i :=[Robot1 Robot2 Robot3 Robot4 Robot5 Robot6
Robot7 Robot8 Robot9 Robot10];

parameter HC{i}:=[5 5 4 5 6 5 7 8 4 7];
HM{i} := [4 8 5 6 4 8 7 6 5 3];
HT{i} := [6 2 4 6 3 4 5 2 5 3];
Ordered{i} := [20 15 7 6 5 8 9 8 7 5];
Price{i} := [300 200 100 50 50 100 200 100 400 200];

integer variable Robots{i};
constraint
Component: sum{i} HC*Robots <= 3500;
Mounting: sum{i} HM*Robots <= 4800;
Testing: sum{i} HT*Robots <= 3000;
Order{i}: Robots >= Ordered;

maximize revenue: sum{i} Price*Robots;
Writep(revenue);
Write(' Robots Rob-Ord Price Robots Tot.Hours\n');
Write{i}(' %-7s %3d %4d %5d %2d\n',

i,Robots-Ordered,Price,Robots,HC+HM+HT);
end� �

LPL Modeling Steps

There are several differences from the previous model tutor03.lpl:
1. The elements of set i do not need to be integers. The user can give them names such as

Robot1 ... Robot10.
2. If the context allows it, there is no need to make a difference between index names and set

names. In this model, we use i for a set name and an index name. the syntax i in I
can be simplified just to i.

3. The indices in expressions, such as Robots[i] can be dropped, since LPL already
knows that Robots, for example, has been defined over the index-set i. Hence the two
following lines are equivalent for LPL:

sum{i} HC * Robots <= 3500
sum{i} HC[i] * Robots[i] <= 3500

4. A Write statement may be used to write formatted output. In the model, we use two
Write. The first is to output just a string to the NOM-file. The second is to output a
formatted line for each i (explained in a later model). The syntax is similar to C or Java’s
printf() function. So, %-7s means to fill the first parameter (i) with 7 chars (left

2https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor03

17

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor04
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor04
https://matmod.ch/lpl/HTML/tutor04.html
https://matmod.ch/lpl/HTML/tutor03.html

aligned), %3d means to fill in an integer (the expression Robots-Ordered) with 3
positions, and so on.

Questions

1. Modify %3d in the Write just below Robots to %6.2f and run the model again.
What’s the difference?

2. How much is the revenue, if no robot has been ordered in advance?

Answers

1. The number of Robots are written with 2 decimal places.
2. 252000. One just need to outcomment the bounds Order{i}. The data for Ordered

are still in the model but are no used except for the output.

18

5 Using Indices III (tutor05)
—- Run LPL Code , HTML Document –
Problem: A second index-set j for a set of production steps (processes) is introduced. In con-
trast to the previous model tutor04.lpl, where the production of the robots passed three
processing steps (Component, Mounting, Testing), in this model it is supposed that the produc-
tion goes through 8 steps. Instead of introducing 8 constraints, a second index-set j is introduced
to collect the list of processing steps. Two data change now: a vector Capacity{j} is intro-
duced in place of the right hand side of the constraint, and the three vectors HC{i}, HM{i}, and
HT{i} in the previous model are now replaced by a two-dimensional matrix Hours{i,j}.
This matrix gives the needed hours for passing the processing step j for robot type i.

Listing 5: The Complete Model implemented in LPL [2]� �
model TUTOR05 " Using I n d i c e s I I I ";

set i :=[Robot1 Robot2 Robot3 Robot4 Robot5 Robot6 Robot7
Robot8 Robot9 Robot10];

parameter Ordered{i}:=[20 15 7 6 5 8 9 8 7 5];
Price{i}:=[300 200 100 50 50 100 200 100 400 200];

set j:=[Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8];
parameter Capacity{j}:=[3500 4800 3000 3400 3000 3200 4000 2500];

Hours{i,j} := [
9 9 9 9 9 9 . 9
5 8 2 . 3 . . 3
4 5 4 . 5 6 . 5
5 6 6 . 8 . . 4

10 4 3 . . 5 . 6
5 8 4 . . . 5 1
7 7 5 5 . 3 . 2
8 6 2 4 . . . 5
4 5 5 6 4 . . .
7 3 3 1 1 1 1 4];

variable Robots{i};
constraint
Steps{j}: sum{i} Hours[i,j] * Robots[i] <= Capacity[j];
Order{i}: Robots[i] >= Ordered[i];

maximize revenue: sum{i} Price[i] * Robots[i];
Writep(revenue, Robots);

end� �
LPL Modeling Steps

The data are now organized differently: All of them are collected in "tables".
1. A second index-set (j) is introduced for the production steps. The previous models use

three explicit production steps, resulting in three constraints. In this model, a generic
number of steps – concretely 8 – is used.

2. The time, which indicates the hours required for each type of robot i at each production
step j, is defined as a two-dimensional table Hours{i,j}. Undefined (or zero) entries
are entered as a dot.

3. The Hours{i,j} matrix is defined as a list of |𝑖| ⋅ |𝑗| entries.

19

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor05
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor05
https://matmod.ch/lpl/HTML/tutor05.html

4. Note that the Steps{i} constraint generates 8 different constraints. One can verify this
when generating the EQU-file (in lplw.exe choose Tools/Options enter ’e’, run, then
open menu ’Tools/EQU-file’).

Questions

1. Choose Tools/Options, at the tab “Compiler” enter ’e’, Run the model, then click the menu
Tools/Create EQU-file. A listing of all equations opens.

2. For which constraints the capacity is used at 100%?
3. What big advantage do you see in using one data table instead of using a separate list for

every constraint?
4. The production manager wants to produce the same quantity of every type of robot. What

do you have to change?

Answers

1. An equation listing is generated. It is stored in the EQU-file. On disk the file is:
tutor06.equ.

2. (1) Run the model, (2) click the tab ’TABLE’, (3) click the blue small cycle C called
’Steps’ at the left on the “Tree” tab part of the application, (4) open menu Tools/Options,
(5) choose tab “Format”, (6)in the “Data Attribute” list choose the radio button “Dual /
Reduced cost”. A reduced table appears with processing steps Step1 and Step3. These
two constraints are at their maximal capacities. (To understand this you need to know what
dual values are.)

3. When you have to add an additional production step or an additional type of robot the above
formulation is adapted much faster. Instead of adding a parameter list and an additional
constraint you just have to adjust the corresponding set formulation and enter the data
into the table. The additional constraint is generated automatically by LPL. With regard
to reusability and maintainability, you should always prefer the structure demonstrated in
this example.

4. We add a variable quantity and the following constraint:
constraint Quantity{i}: Robots[i] = quantity;

The maximum revenue now is 92968.75. Note that in this example both the variable and
the constraint have the same name. However, this is only possible because LPL makes a
difference between lower- and uppercase letters.

20

6 Data Include Files (tutor06)
—- Run LPL Code , HTML Document –
Problem: This is the same model astutor05.lpl. The data are stored in another file (tutor.inc)
and are included at parse-time. The instruction to physically read and include another file into
the code is:

/ *$I 'filename' * /

The included data file – also specified in LPL syntax – is as follows (note that in the Web
browser the incluse file already directly included in the code):

-- tutor.inc: data file for the tutor models as include-file

set i := [Robot1 Robot2 Robot3 Robot4 Robot5 Robot6 Robot7
Robot8 Robot9 Robot10];

j := [Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8];
parameter Ordered{i}:=[20 15 7 6 5 8 9 8 7 5];

Price{i} := [300 200 100 50 50 100 200 100 400 200];
Capacity{j} := [3500 4800 3000 3400 3000 3200 4000 2500];
Hours{i,j} := [

9 9 9 9 9 9 . 9
5 8 2 . 3 . . 3
4 5 4 . 5 6 . 5
5 6 6 . 8 . . 4
10 4 3 . . 5 . 6
5 8 4 . . . 5 1
7 7 5 5 . 3 . 2
8 6 2 4 . . . 5
4 5 5 6 4 . . .
7 3 3 1 1 1 1 4];

Listing 6: The Complete Model implemented in LPL [2]� �
model TUTOR06 " Data I n c l u d e F i l e s ";

/ ∗ $I ' t u t o r . i n c ' ∗ / −− a d a t a f i l e i s i n c l u d e d h e r e
variable Robots{i};
constraint
Steps{j}: sum{i} Hours*Robots <= Capacity;
Order{i}: Robots >= Ordered;

maximize revenue: sum{i} Price*Robots;
Write('Revenue: %7.3f\n',revenue);
Write('Variable Lower Bounds:\n%10.2f\n', {i} GetValue(Robots,1));
Write('Variable Upper Bounds:\n%10.2f\n', {i} GetValue(Robots,2));
Write('Dual Values:\n%10.2f\n', {i} GetValue(Robots,3));
Write('Element Names of set i:\n%10s\n', {i}i);
Write('\nVariableNames Values\n------------------------\n');
Write{i}('%-15s = %6.2f\n', GetName(Robots,0), GetValue(Robots,0));

end� �

21

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor06
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor06
https://matmod.ch/lpl/HTML/tutor06.html

LPL Modeling Steps

1. At any point, a file can be included using the $I option. Inclusion of up to level of five is
possible.

2. The second, third and fourth Write statement prints the lower bound, the upper bound,
and the dual values of theRobots variable. The function in LPL is defined asGetValue(reference,what)
(see manual).

3. The lastWrite statement prints the variable names with the values: The functionGetName()
returns the variable names as string.

Questions

1. List the right hand side of constraint Steps. List also the reduced costs of Steps.
2. Click the ’Files’ tab in lplw in the left part then click tutor.inc.

Answers

1. You need to add the instruction
Write('RHS Values:\n%10.2f\n' , {j} (GetValue(Steps,2));
Write('RC Values:\n%10.2f\n' , {j} (GetValue(Steps,7));

2. The file tutor.inc opens in a new tabbed window and the content can be edited.

22

7 Reading text files (tutor07)
—- Run LPL Code , HTML Document –
Problem: The data are read from a text-file tutor.txt using the function Read.

Listing 7: The Complete Model implemented in LPL [2]� �
model TUTOR07 " Reading t e x t f i l e s ";

set i; j;
parameter Ordered{i}; Price{i}; Capacity{j};
parameter Hours{i,j};
variable Robots{i};
constraint
Steps{j}: sum{i} Hours*Robots <= Capacity;
OrderX{i}: Robots >= Ordered;

parameter cnt;
Read('tutor.txt, %1:Table');
Read{i}('%1', i=1,Price,Ordered);
Read{j}('%2', j,Capacity);
Read{i}('%3', i, {j} Hours, cnt:=cnt+1);
maximize revenue: sum{i} Price*Robots;
Writep(revenue, Robots,cnt);

end� �
The text data file read by LPL has the following structure:

// tutor.txt: data file as plain text for the tutor models
// Data for the tutor examples

Table 1: Robots: i, Price, Ordered
Robot1 300 20
Robot2 200 15
Robot3 100 7
Robot4 50 6
Robot5 50 5
Robot6 100 8
Robot7 200 9
Robot8 100 8
Robot9 400 7
Robot10 200 5

Table 2: Steps: j, and Capacity
Step1 3500
Step2 4800
Step3 3000
Step4 3400
Step5 3000
Step6 3200
Step7 4000
Step8 2500

Table 3 : Hours

23

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07
https://matmod.ch/lpl/HTML/tutor07.html

/* Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 */
Robot1 9 9 9 9 9 9 . 9
Robot2 5 8 2 . 3 . . 3
Robot3 4 5 4 . 5 6 . 5
Robot4 5 6 6 . 8 . . 4
Robot5 10 4 3 . . 5 . 6
Robot6 5 8 4 . . . 5 1
Robot7 7 7 5 5 . 3 . 2
Robot8 8 6 2 4 . . . 5
Robot9 4 5 5 6 4 . . .
Robot10 7 3 3 1 1 1 1 4

LPL Modeling Steps

The data are separated from the model file and are organized in a text file tutor.txt. This
file is organized sequentially in three blocks – also called “Tables” each beginning with the user
defined block delimiter string Table. Each Read instruction can read a block. Which block
to read is specified by a block number (’%1’). These blocks are numbered beginning with 1.
Each Read opens the file, reads a block and closes the file automatically. There is no need to
open and close files in LPL.

1. LPL can read these blocks separately with the Read function. The data within the blocks
must be organized in rows and columns. Such files are easy to generate by other applica-
tions.

2. The first Read instruction only defines two file parameters: the filename (tutor.txt)
and the block delimiter string (Table). These parameters are stored for subsequent Read
instructions.

3. The second Read instruction opens the file, then jumps to the first (’%1’) occurrence of
Table that starts a new line and begins reading from the next line. Since Read is indexed
over {i}, it reads lines until another block delimiter string appears at the beginning of
a line or until the end of file has been reached. Each line contains three data separated
by blanks. They are recognized and assigned to the internal entities i, Ordered, and
Price.

4. A single Read always reads a single line. An indexed Read repeats reading lines from a
block. Hence, Read{i} repeats the reading. The read elements are separated by commas.

5. If an element to read is indexed then the elements are repeatedly read on the same line.
Hence, the code i, {j}Hours reads first the i on the line and then repeats reading the
Hours[i,j] on the i-th line ordered by j. It is a powerful mechanism to read entire
matrices in a single instruction.

6. Furthermore, the last instruction displays an instruction cnt:=cnt+1 that is executed
after each reading an line from the file.

Questions

24

1. Exchange the second and the third Read instruction. What happens?
2. Comment the maximize instruction then execute. What happens?

Answers

1. Nothing! The reads can be done in any order. There is no need to read the text blocks in
sequential order from a text file.

2. The model is not solved. However, that data are nevertheless read from the textfile. This
can be seen when adding an instruction Writep(Hours), for example. Another way
to see the data is to click the yellow cycle ’M’ above ’Tree’ in the left part of the lplw
window. Clicking on it enlarges the list by green diamond signs (for example). Click on
’Hours’ then on the ’TABLE’ tab in the menu and the data of Hours are displayed in a
grid.

25

8 Reading data from Excel I (tutor07a)
—- Run LPL Code , HTML Document –
Problem: The data are read from an Excel sheet (Sheet2) by the instruction Read. Note that lpl
should correspond to the Excel Version 32/64-bit to run correctly.

Listing 8: The Complete Model implemented in LPL [2]� �
model TUTOR07a " Reading d a t a from Exce l I ";

set i; j;
parameter Ordered{i}; Price{i}; Capacity{j};
parameter Hours{i,j};
variable Robots{i};
constraint Steps{j}: sum{i} Hours*Robots <= Capacity;
OrderX{i}: Robots >= Ordered;

string parameter WB:='rdb:tutor.xlsx';
Read{i}(WB&',[Sheet2$A5:C15]',

i='Robots', Price='Price', Ordered='Ordered');
Read{j}(WB&',[Sheet2$E5:F13]', j='Steps', Capacity='Capacity');
Read{i,j}(WB&',[Sheet2$H5:J62]', i='i', j='j', Hours='Hours');
maximize revenue: sum{i} Price*Robots;
Writep(revenue, Robots);

end� �
Note that the data in the Excel sheet Sheet2 are organized in a similar way than the data in

a database (in contrast to the sheet Sheet1). The Excel sheet Sheet2 contains three “tables”
ordered in ranges in Excel with a header in each range. Therefore, the data can be read from
Excel in the same way as they are read from a regular relational database using a database driver.
The whole information of which driver to use is packed by the filename define in WB

string parameter WB:='rdb:tutor.xls';

The starting part rdb: says to use a database driver and the file extension says to use the Mi-
crosoft Jet driver. The parameter is expanded by LPL to the following connection string (and
one could alterantively use this connection string):

string parameter WB:=Provider=Microsoft.Jet.OLEDB.4.0;Extended\
Properties=" Exce l 8 . 0 ;HDR=Yes ; ";Data Source=tutor.xls';

(Note that the \ character at the end of the first line as well as all leading blanks are removed by
the LPL parser.)

The Excel sheet is shown in Figure 2.

LPL Modeling Steps

The data are separated from the model file and can be read by instruction. The Read instructions
are similar than they are in the previous version where data are read from text files. There are
differences:

1. An string parameter WB defines the connection string3 to Excel. This is concatenated with
the source filename (here an Excel workbook) do give the string WB. This defines the
source of reading. (Note that a string can be broken over lines in LPL using a \ character
at the end of a line.)

3The concept of connection string is explained at wikipedia or a similar source. The user should be familiar
with this concept in order to use database connectivity with LPL.

26

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07a
https://matmod.ch/lpl/HTML/tutor07a.html
http://en.wikipedia.org/wiki/Connection_string

Figure 2: Data in Excel Sheet

2. The string WB is concatenated with the “table name”, that is, the range within the Excel
sheet. A range in Excel is specified by the worksheet name followed by a top-left and
bottom-right cell name as follows: [Sheet2$A5:C15]. The de filename and table
name are separated by a comma.

3. The three following parameters have the form lpl_id = source_field. Hence, the
expression i=’Robots’ means that the set i is assigned from the field (column) with
the header name ’Robots’, this is a standard way to name columns in Excel that act as
database tables.

4. It is important to notice that the read elements must be organized into columns or fields.
In this case, the columns are named as ’Robots’, ’Ordered’, and ’Price’. For
LPL, they also could be accessed through numbers 1, 2, and 3, indicating the column
numbering beginning with number 1. Hence, the instruction could also be written as
follows:

Read{i}(WB&',[Sheet2$A5:C15]', i=1, Price=2, Ordered=3);

27

indicating that i is read from “column” 1 in the indicated sheet range. If the data are
not organized this way, one can read from Excel using a more direct driver (see model
tutor07a14).

5. Since the three elements are listed in increasing numbers beginning with 1, one also can
leave them out, LPL just assign them anyway. Hence the instruction can be simplified to:

Read{i}(WB&',[Sheet2$A5:C15]', i, Price, Ordered);

Now we are basically on the same instruction as for the text reading in the previous model
tutor075, except that the source name is different.

Questions

1. Replace the first Read instruction to:
Read{i}(WB&',[Sheet2$A5:C15]', i, Price, Ordered);

2. Replace the first Read instruction to:
Read{i}('tutor.txt,%1:Table', i, Price, Ordered);

Compare the two statements and compare the source file too.

Answers

1. This verifies that the two instruction are indeed the same.
2. The same data are read from the text file and the Excel sheet. This shows: text file reading

and Excel reading are – from the syntactical point of view – basically the same. Only the
source parameter has changed. One also can write for text files:

Read{i}('tutor.txt,%1:Table', i=1, Price=2, Ordered=3);

This confirms that in text files “tables” are also seen as columns and rows. In text files the
columns are delimited by certain “blank” characters. By default, they are space, tabulator
and linefeed. However the user can define its own delimiting characters. Common are
comma or semicolon.

The Excel Worksheet can be downloaded here: tutor.xls.

4https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07a1
5https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07

28

https://matmod.ch/lpl/HTML/tutor07a1.html
https://matmod.ch/lpl/HTML/tutor07.html
https://matmod.ch/getfile.php?file=tutor.xls

9 Reading data from Excel II (tutor07a1)
—- Run LPL Code , HTML Document –
Problem: The data are read from an Excel sheet by the instruction Read. Note that lpl should
correspond to the Excel Version 32/64-bit to run correctly.

Listing 9: The Complete Model implemented in LPL [2]� �
model TUTOR07a1 " Reading d a t a from Exce l I I ";

set i; j;
parameter Ordered{i}; Price{i}; Capacity{j};
parameter Hours{i,j};
variable Robots{i};
constraint
Steps{j}: sum{i} Hours * Robots <= Capacity;
OrderX{i}: Robots >= Ordered;

string parameter XLS := 'tutor.xls';
Read(XLS&',[Sheet1$C3:L3]', {i}i);
Read(XLS&',[Sheet1$C14:L14]', {i}Ordered);
Read(XLS&',[Sheet1$C15:L15]', {i}Price);
Read{j}(XLS&',[Sheet1$A5:A12]', j);
Read{j}(XLS&',[Sheet1$N5:N12]', Capacity);
Read{j}(XLS&',[Sheet1$C5:N12]', {i}Hours);
maximize revenue: sum{i} Price*Robots;
Writep(revenue, Robots);

end� �
Compared to the data in the previous Excel tutor.xls$Sheet2 (see model tutor07a6),

the data in this worksheet are organized in a more “free style” (Figure 3. The data are loosely
scattered over the sheet.

Figure 3: Data in Excel Sheet (“free style”)

The Excelsheet Sheet1 contains data distrubuted over several ranges. For example the
list of robot types is displayed in the cells C3:L3. The set of production steps is in the range
A5:A12, and so on. These ranges can be read by LPL, each with a separate Read statement.

The Excel Worksheet can be downloaded here: tutor.xls.
6https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07a

29

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07a1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07a1
https://matmod.ch/lpl/HTML/tutor07a1.html
https://matmod.ch/lpl/HTML/tutor07a.html
https://matmod.ch/getfile.php?file=tutor.xls

LPL Modeling Steps

The data are separated from the model file and can be read by instruction. The Read instruc-
tions are similar to those in the previous version where data are read from text files. There are
differences:

1. Each Read instruction contains two parameters: the first parameter defines the Excel
Filename and the “table” separated by a comma. The “table” consists of a worksheet
name and a range, enclosed within brackets. The second parameter is LPL entity that
must be read.

2. Again an indexed Read reads over several “lines” (that is, rows) in a sheet, and an indexed
parameter reads cells over several columns.

3. Hence, the parameter {i}Ordered means to read cells on a single row, defined by the
range C14:L14 (see second Read).

4. Whereas, Read{j}(’tutor.xls,[Sheet1$A5:A12]’, j);means to read a sin-
gle data j on several rows. The logic is similar for other Read statements.

Questions

1. What is the main difference between the “free style” and the “database style” of data in
Excel?

Answers

1. In the “free style”, the data are scattered over the sheet and LPL must read each range
separately. In “database style” the tables are organized in a way similar to a database table
(with a header as fieldnames) and LPL reads them using a database driver, like ODBC or
MS’s Jet engine.

30

10 Reading data from Database (tutor07b)
—- Run LPL Code , HTML Document –
Problem: The data are read in from an Access database by the instruction Read. Note that the
LPL app should correspond to the MS Access Version 32/64-bit to run correctly.

Listing 10: The Complete Model implemented in LPL [2]� �
model TUTOR07b " Reading d a t a from D a t a b a s e ";

set i; j;
parameter Ordered{i}; Price{i}; Capacity{j};
parameter Hours{i,j};
variable Robots{i};
constraint
Steps{j}: sum{i} Hours * Robots <= Capacity;
OrderX{i}: Robots >= Ordered;

string parameter DB:='tutor.mdb';
Read{i}(DB&',iTable', i='Robots', Price='Price', Ordered='Ordered');
Read{j}(DB&',jTable', j='Steps', Capacity='Capacity');
Read{i,j}(DB&',HoursTable', i='i', j='j', Hours='Hours');
/ / Wr i t e { i } ('&: '&DB& ' t e s t . mdb , HoursTab le1 ' , ' ' , ' I '= i , { j } (j=Hours)) ;
maximize revenue: sum{i} Price*Robots;
Writep(revenue, Robots);

end� �
The MS Access database tutor.mdb consists of three tables as shown in Figure 4. It can

be downloaded here: tutor.mdb.

LPL Modeling Steps

The data are separated from the model file and can be read by instruction. The Read instructions
are similar to those in the previous versions where data are read from text files and Excel sheets.
There are differences:

1. An string parameter DB defines the connection string to a database. 7 In LPL, the con-
nection string is derived from the file extension. In this case it is .mdb that is a Access
database and so the parameter is automatically expanded to:

string parameter DB:='Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=tutor.mdb';

This is concatenated with the source filename (here an database filename) do give the
string DB. This defines the source of reading. (Note if the file extension would have been
.db then LPL would read from a SQLite database, see reference manual for more details.

2. The string DB is concatenated with a database table name or a SQL SELECT statement
that delivers a table. This is iTable, for example, for the first Read statement which
contains the three fields Robots, Price, and Ordered. The database filename and
table name are separated by a comma. Database filename and table name together specify
the source of reading databases for LPL.

7The concept of connection string is explained at wikipedia or a similar source. The user should be familiar
with this concept in order to use database connectivity with LPL.

31

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07b
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07b
https://matmod.ch/lpl/HTML/tutor07b.html
https://matmod.ch/getfile.php?file=tutor.mdb
http://en.wikipedia.org/wiki/Connection_string

Figure 4: Data in the database

3. The three following parameters have the form lpl_id = source_field. Hence, the
expression i=’Robots’ means that the set i is assigned from the field with the name
’Robots’ in the database table.

4. It is important to notice that the read elements are organized into fields with a certain
ordering. In this case, the fields are named as ’Robots’, ’Ordered’, and ’Price’
in this order. For LPL, they also could be accessed through numbers1, 2, and3, indicating
the column numbering beginning with number 1. Hence, the instruction could also be
written as follows:

Read{i}(DB&',iTable', i=1, Price=3, Ordered=2);

indicating that i is read from column 1 - (Note that Price is the third fields no the
second!)

5. Reading the three elements in increasing numbers beginning with 1, one also can leave
them out, LPL just assigns them anyway. Hence the instruction can be simplified to:

Read{i}(DB&',iTable', i, Ordered, Price);

(Note that Ordered is before Price in the database table.) Now we have basically the
same instruction as for the text reading in the previous model tutor078. Only the source
name is different.

8https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07

32

https://matmod.ch/lpl/HTML/tutor07.html

Further Comments: Sometimes it makes sense to read several fields into the same matrix within
LPL. Suppose the database above contains an additional table which is depicted in Figure 5.

Figure 5: Table HoursTable1 in the database

This table hoursTable1 contains the same information as the table hoursTable, but
the layout is different. The production steps j are defined as fields Step1 to Step8. We would
like – similar to the third table in model tutor079 – to read all these fields into a single matrix
parameter H{i,j} (which is identical to the table Hours{i,j} in our model). This can
be achieved by the following reading statement

Read{i}(DB&',HoursTable1', i='I', {j} H);

Note that the syntax is similar to the syntax that is used in the model tutor0710 for reading the
Hours table. The condition for this to work is, of course, that the fields are in the same order
as the ordering of the elements in j.
Questions

1. Replace the first Read instruction to:
Read{i}(DB&',iTable', i, Ordered, Price);

2. Replace the first Read instruction to:
Read{i}('tutor.txt,%1:Table', i, Price, Ordered);

Compare the two statements and compare the source file too.
3. The table name can also be a SQL SELECT statement. Modify the LPL READ instruction

in that sense.
Answers

1. This verifies that the two instruction are indeed the same.
9https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07

10https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07

33

https://matmod.ch/lpl/HTML/tutor07.html
https://matmod.ch/lpl/HTML/tutor07.html

2. The same data are read from the text file and the Excel sheet. This shows: text file reading
and Excel reading are basically the same. Only the source parameter has changed. One
also can write for text files:

Read{i}('tutor.txt,%1:Table', i=1, Price=2, Ordered=3);

This confirms that in text files “tables” are also seen as columns. In text files the columns
are delimited by certain “blank” characters. By default, they are space, tabulator and
linefeed. However the user can define its own delimiting characters. Common are comma
or semicolon.

3. The instruction is:
Read{i}(DB&',SELECT Robots,Price,Ordered FROM iTable', i,

Price, Ordered);

(Note that the ordering of the fields Price and Ordered are reversed.)

34

11 Read consecutive blocks in Text files (tutor07d)
—- Run LPL Code , HTML Document –
Problem: This file shows how LPL can read a text file as continues blocks. Normally, a single
read statement opens a (text)-file reads a block of data and closes the file again. Now we want to
read a block a save the file pointer before closing the file, because we want to continue reading
the file in the next Read statement. This is done with the ’@’ char at the beginning of the file
name.

The first Read instruction assigns the file name (which kept for the subsequent read statments
without repeating it, a reads the 6 entries on the first line of the file. Note that the filename begins
with a ’@’ character. That means it stores a file pointer before closing the file, such that the next
read statement can continue reading from the text file.

Note that it is important to assign the three sets now, otherwise the following read instructions
do not know how many lines to read.

The second Read instruction then reads the next 𝐽 = 9 lines from the file, again keeping a
pointer before closing.

The third Read instruction reads the next 𝐾 = 17 lines assigns the first column to 𝑐𝑘, the
second column to 𝑛𝑘 and the the next 𝐽 = 9 token to 𝐴𝑗,𝑘.
The text data file read by LPL has the following structure:

92 9 17 20 1 27
1 6 1
1 5 0
1 2 0
1 2 0
1 4 0
1 5 0
1 3 0
2 3 0
1 28 0
3 11 0 0 1 0 1 0 0 0 0
3 2 1 0 1 0 0 0 0 0 0
3 8 0 0 1 0 0 0 0 0 0
3 3 0 0 1 1 0 0 0 0 0
3 1 0 1 1 0 0 0 0 0 1
3 1 1 0 1 1 0 0 0 0 0
2 12 0 0 1 0 1 0 0 0 0
2 32 0 0 1 0 0 0 0 0 0
2 6 1 0 1 0 0 0 0 0 0
1 2 0 0 1 0 1 0 0 0 0
2 7 0 0 1 1 0 0 0 0 0
2 2 0 1 1 0 1 0 0 0 1
2 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 1 1 0 1 0 0
0 1 1 0 1 0 0 0 0 0 0
2 1 1 0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0

35

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07d
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07d
https://matmod.ch/lpl/HTML/tutor07d.html

Note when using the ’@’ option in a Read instruction, use it also for all other Read instruction
for reading the same file. To not mix them up (except you know what you do!).

Modeling Steps

Listing 11: The Complete Model implemented in LPL [2]� �
model tutor07d " Read c o n s e c u t i v e b l o c k s i n Text f i l e s ";

set i,h,g;
j;
k;

parameter
BA; OB; SP;
c{k}; n{k};
r{j}; s{j}; p{j};
A{j,k};

model data " i n p u t d a t a ";
parameter I; J; K; dum;
Read('@tutor07d.txt',I,J,K,BA,OB,SP);
i:=1..I; j:=1..J; k:=1..K;
Read{j}('@', r,s,p);
Read{k}('@',c,n,{j} A);

end
end� �

36

12 Writing to text files (output locally only) (tutor08)
—- Run LPL Code , HTML Document –
Problem: Data and the solution are written to a text file using the function Write.

Listing 12: The Complete Model implemented in LPL [2]� �
model TUTOR08 " W r i t i n g t o t e x t f i l e s (o u t p u t l o c a l l y on ly) ";

/ ∗ $I ' t u t o r . i n c ' ∗ / −− a d a t a f i l e i s i n c l u d e d h e r e
variable Robots{i};
constraint
Steps{j}: sum{i} Hours*Robots <= Capacity;
OrderX{i}: Robots >= Ordered;

maximize revenue: sum{i} Price*Robots;
Write('tutor08out.txt','--LPL generated file\n\nTable 1 -- robot

types\n');
Write{i}('%9s\t%4d\t%2d\n', i,Price,Ordered);
Write('\nTable 2 -- processing steps\n');
Write{j}('%9s\t%4d\n', j,Capacity);
Write('\nTable 3 -- unit time comsumption\n');
Write{i}('%9s %4d\n', i, {j}Hours);
Write('\nTable 4 -- Solution\n');
Write{i}('%9s %4d\n', i, Robots);

end� �
The text output file written by LPL has the following structure:

--LPL generated file

Table 1 -- robot types
Robot1 300 20
Robot2 200 15
Robot3 100 7
Robot4 50 6
Robot5 50 5
Robot6 100 8
Robot7 200 9
Robot8 100 8
Robot9 400 7

Robot10 200 5

Table 2 -- processing steps
Step1 3500
Step2 4800
Step3 3000
Step4 3400
Step5 3000
Step6 3200
Step7 4000
Step8 2500

Table 3 -- unit time comsumption

37

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08
https://matmod.ch/lpl/HTML/tutor08.html

Robot1 9 9 9 9 9 9 0 9
Robot2 5 8 2 0 3 0 0 3
Robot3 4 5 4 0 5 6 0 5
Robot4 5 6 6 0 8 0 0 4
Robot5 10 4 3 0 0 5 0 6
Robot6 5 8 4 0 0 0 5 1
Robot7 7 7 5 5 0 3 0 2
Robot8 8 6 2 4 0 0 0 5
Robot9 4 5 5 6 4 0 0 0

Robot10 7 3 3 1 1 1 1 4

Table 4 -- Solution
Robot1 20
Robot2 266
Robot3 7
Robot4 6
Robot5 5
Robot6 8
Robot7 9
Robot8 8
Robot9 420

Robot10 5

LPL Modeling Steps

The instruction Write can be used to write formatted text files.
1. The parameters of the function Write as as following: The first parameter is a filename.

The second parameter is a format string, and the other parameters are the data to write.
The syntax is: Write(filename,format,datalist) .

2. Each Write instruction opens the file automatically and closes it at the end of the writing.
3. If the first parameter filename is missing then the file is opened in an appending mode,

that is, the data are added automatically at the end of the existing file which name has been
defined by a previous Write statement.

4. If no previous Write has defined a filenane than the file name is the NOM-file.
5. If the first parameter filename is not missing then the file is opened in a write mode,

that is, an existing file with the same name is erased before writing can begin.
6. The first parameter is missing if and only if the Write has only one parameter or if the

first (string) parameter contains a linefeed or a % chracter.
7. The second parameter format specifies the format of the output. It’s a string. This

parameter of the first Write, for example, is:
--LPL generated file\n\nTable 1\n

It says to write the text --LPL generated file to the file, then to write two linefeed
characters (\n), then to write Table 1 and another linefeed.

38

8. The format parameter of the second Write is: %9s\t%4d\t%2d\n It says to translate
i into a string of length 9 (%9s), then to write a tabulator \t, then to replace %4dwith
Price with length 4, write another tab, and finally, to write Ordered with length 2
(%2d).

Note: The model tutor08e11 lists all format specifiers that can be used in LPL.
Questions

1. Replace the second Write statement with:
Write{i}('%-9s\t%6.2f\t%2d\n', i,Price,Ordered);

2. Study all specifiers!
3. Why do all Write statements send the data to a single file named tutor08out.txt ?

Answers

1. The set i is written in left align mode. Price is written as floating point number with
two decimals.

2. Open the model tutor08e.
3. Only the firstWrite specifies the filename. This filename is stored for subsequentWrite

instructions. Since the first parameter of all otherWrite instructions contain the character
\n, they are all interpreted by LPL as the format parameter and data is appended to the
file.

11https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08e

39

https://matmod.ch/lpl/HTML/tutor08e.html
https://matmod.ch/lpl/HTML/tutor08e.html

13 Writing data to Excel (locally only) (tutor08a1)
—- Run LPL Code , HTML Document –
Problem: The data are written to an Excel sheet by the instruction Write.

Listing 13: The Complete Model implemented in LPL [2]� �
model TUTOR08a1 " W r i t i n g d a t a t o Exce l (l o c a l l y on ly) ";

/ ∗ $I ' t u t o r . i n c ' ∗ / −− a d a t a f i l e i s i n c l u d e d h e r e
variable Robots{i};
constraint
Steps{j}: sum{i} Hours * Robots <= Capacity;
OrderX{i}: Robots >= Ordered;

string parameter XLS := 'tutor08out.xls';
Write(XLS&',[Sheet4$C3:L3]', {i}i);
Write(XLS&',[Sheet4$C14:L14]', {i}Ordered);
Write(XLS&',[Sheet4$C15:L15]', {i}Price);
Write{j}(XLS&',[Sheet4$A5:A12]', j);
Write{j}(XLS&',[Sheet4$N5:N12]', Capacity);
Write{j}(XLS&',[Sheet4$C5:L12]', {i}Hours);
maximize revenue: sum{i} Price*Robots;
Writep(revenue, Robots);

end� �
The Write instructions has exactly the same syntax as the Read instruction when reading

from Excel (see model tutor07a112): only the keyword Read has been replaced by the keyword
Write (and another file name – tutor08out.xls – is used).

Figure 6: Data in Excel Sheet (“free style”)
The generated Excel sheet Sheet4 is displayed in Figure ??. Note that if the Excel file does

not exist, then a new workbook is created. Furthermore, if the corresponding worksheet (here
Sheet4) within the Excel workbook does not exist, it is added automatically.
Questions

1. Is it possible to write data to Excel in a “database style” in LPL?
Answers

1. Unfortunately, this is not possible, because the MS Jet database driver does not correctly
interpret a range such as [Sheet1$A5:C15] as a true database table.

12https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07a1

40

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08a1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08a1
https://matmod.ch/lpl/HTML/tutor08a1.html
https://matmod.ch/lpl/HTML/tutor07a1.html

14 Writing to databases (output locally only) (tutor08b)
—- Run LPL Code , HTML Document –
Problem: Data and the solution are written to a database using the function Write. The Write
statements in the model create a new database with the structure that is depicted in Figure 7.

Listing 14: The Complete Model implemented in LPL [2]� �
model TUTOR08b " W r i t i n g t o d a t a b a s e s (o u t p u t l o c a l l y on ly) ";

/ ∗ $I ' t u t o r . i n c ' ∗ / −− a d a t a f i l e i s i n c l u d e d h e r e
variable Robots{i};
constraint
Steps{j}: sum{i} Hours*Robots <= Capacity;
OrderX{i}: Robots >= Ordered;

maximize revenue: sum{i} Price*Robots;
string parameter DB:='tutor08out.db';
Write{i} ('&:'&DB&',iTable', 'Robots'=i, 'Price'=Price,'Ordered'=

Ordered);
Write{i} ('*:'&DB&',rTable', 'Robots'=i, 'Quan'=Robots);
Write{j} ('*:'&DB&',jTable', 'Steps'=j, 'Capacity'=Capacity);
Write{i,j}('*:'&DB&',HoursTable', 'i'=i, 'j'=j, 'Hours'=Hours);
Write{i} ('*:'&DB&',HoursTable1', 'I'=i, {j} (j=Hours));

end� �

Figure 7: The generated Database
In a way similar to the Read statement, LPL connects to a database using the connec-

tion string method. The parameter DB contains that string together with the database name
tutor08b.db .

LPL Modeling Steps

41

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08b
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08b
https://matmod.ch/lpl/HTML/tutor08b.html

The instruction Write can be used to write to existing database tables or can also create them
and fill them on the fly.

1. The parameters of the function Write are as following: The first parameter is a connec-
tion string with the filename and a tablename separated by a comma.

2. Each Write instruction opens the database automatically and closes it at the end of the
writing.

3. If the first parameter begins with ’&:’ then this means that the database together with
the table is directly created (erasing a existing file with the same name). If it begins with
’*:’ then the existing database is extended with a new table. If it begins with ’-:’ then
this means that the existing table content is deleted before new records are added. And
finally, if it begins with ’+:’, records are added to an existing content.

4. The other parameters assign the data to the specified fields: So ’Robots’=i means to
write the data of the set i into the fields named ’Robots’.

5. Since the first Write statement is indexed over i, this means that LPL write as many
records into the table iTable as i has elements. Each writing is an single record writing.

6. Note that the syntax of reading a record from a database usingRead is similar (tutor07b13).
The big difference is the inverse assignment: instead of i=’Robots’ here we write
’Robots’=i, suggesting that the “traffic” goes from right to left as in an assignment
statement.

7. Looking at the last Write statement, one can see that LPL also can create fields from
an LPL set. The field names are directly taken from the element name of set in LPL and
assigned correspondingly.

Further Comments: There are some other interesting aspects in creating databases through
LPL. If the fieldname begins with the character ’I’, for example, then LPL generates the field
as a key field. If it begins with a underscore ’_’ the field will be indexed automatically in the
database.
Questions

1. Combine the first two Write statements into a single one.
2. Add an second Write statement as follows:

Write{i}('+:'&DB&',iTable', 'Robots'=i, 'Price'=Price,'Ordered'
= Ordered);

What happens ?
3. Replace the first Write statement by the following two statements:

Write{i}('&:'&DB&',iTable', 'IRobots'=i, 'Price'=Price,'Ordered
'= Ordered);

Write{i}('+:'&DB&',iTable', 'IRobots'=i, 'Price'=Price,'Ordered
'= Ordered);

What happens ?
13https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor07b

42

https://matmod.ch/lpl/HTML/tutor07b.html

Answers

1. The statement is simply:
Write{i}('&:'&DB&',iTable', 'Robots'=i, 'Price'=Price, 'Ordered

'= Ordered, 'Quan'=Robots);

One only needs to add a field for the solution. There is no need to have two tables.
2. The table iTable is filled two times and contains 20 records, each record twice.
3. As in the previous question, the table iTable will be tried to fill twice. However the

database integrity does not allow this since the field ’IRobots’ is now considered as
a key field with unique entries only. The second Write will generate an database SQL
exception error and the execution is stopped. The log file of LPL gives more details about
the error. Look at it!

43

15 Creating a Report (report locally only) (tutor08c)
—- Run LPL Code , HTML Document –
Problem: This model creates a report using the Fast Report library (see FastReport).

The LPL model is almost exactly the same as the model tutor08b14. Data and the solution
are written to a database using the function Write. The Write statements in the model create
a new database with the structure that is depicted in Figure 8.

Listing 15: The Complete Model implemented in LPL [2]� �
model TUTOR08c " C r e a t i n g a Rep o r t (r e p o r t l o c a l l y on ly) ";

/ ∗ $I ' t u t o r . i n c ' ∗ / −− a d a t a f i l e i s i n c l u d e d h e r e
variable Robots{i};
constraint
Steps{j}: sum{i} Hours*Robots <= Capacity;
OrderX{i}: Robots >= Ordered;

maximize revenue: sum{i} Price*Robots;
string parameter DB:='tutor08out.db';
Write('&:'&DB&',tutor08c1,*' , 'a'='A Report', 'b'='Production', 'c'=

'Version 1', 'd'=Now());
Write('*:'&DB&',hTable' , 'a'='Data Tables', 'b'='Production of

Robots', 'c'='Version 1', 'd'=Now());
Write('*:'&DB&',i0Table', 'Robots'='ID', 'Price'='Price','Ordered'='

Ordered', 'Quan'='Quantity');
Write{i}('*:'&DB&',iTable', 'Robots'=i, 'Price'=Price,'Ordered'=

Ordered, 'Quan'=Round(Robots));
Write('*:'&DB&',j0Table', 'Steps'='ID', 'Capacity'='Capacity');
Write{j}('*:'&DB&',jTable', 'Steps'=j, 'Capacity'=Capacity);
Write('*:'&DB&',HoursTable0' , 'ID'= 'ID', {j} ('a'&(j+0)=Format('%s

', j)));
−−Wri te { i , j } (' ∗ : ' &DB& ' , HoursTab le ' , ' i '= i , ' j '= j , ' Hours '= Hours) ;
Write{i}('*:'&DB&',tutor08c2,*,*.pdf', 'I'=i,{j} (j=Hours));

end� �
In a similar way than the Read statement, LPL connects to a database using the connec-

tion string method. The parameter DB contains that string together with the database name
tutor08out.db .

LPL Modeling Steps

In addition, a report file in PDF format is generated based on the data written to the database.
The crucial modifications are:

1. The first parameter of the first Write statement contains additional comma followed by
a star: ’&:’&DB&’,tTable,*’. LPL generates a database table tTable, and in
addition, a Fast Report template page (file) called tTable.fr3 that is editable with Fast
Reports template designer. In LPLW this template page can be opened by selecting menu
View/Open Report Designer and then selecting the file tTable.fr3. One can
edit the page at will.

2. If the LPL model is executed a second time, then the template page is not created again,
but opened as is.

14https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08b

44

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08c
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08c
https://matmod.ch/lpl/HTML/tutor08c.html
http://www.fastreport.com
https://matmod.ch/lpl/HTML/tutor08b.html

Figure 8: The generated Database

3. Furthermore, the first parameter of the last Write statement contains also a star and a
fourth substring ’*.pdf’ separated by a comma. It is the output file of the report. (’*.pdf’
here means ’tutor08out.pdf’).

’*:’&DB&’,HoursTable1,*,*.pdf’

This statement creates a database table called HoursTable1 and in addition a tem-
plate page HoursTable1.fr3. This page also can be opened using LPLW menu entry
View/Open Report Designer. A preview of the designer page if shown in Figure
9.

4. The four part in the first parameter (which is: tutor08out.pdf) is the filename of the
report file.

5. If the extension of the report file were docx – hence, tutor08out.docx – then au-
tomatically a docx (MS-Word readable) format file would be generated. Other format are
defined, see manual.

Questions

1. Replace *.pdf by *.rtf, and run the model. What happens?
2. Open the template file tutor08c1.fr3 and modify something. Run again.

Answers

1. A RTF-file is generated that can be opened by MS Word (or LibreOffice Writer).
2. Open the template tutor08c1.fr3 (use lplw.exe menu item <View/Open Report De-

signer>). In the designer click on the memo tutor08c1_d. On the property page
change the DisplayFormat to Date/Time. Save and exit the template. Run the model
again. The modified report is generated to file tutor08c1.pdf .

45

Figure 9: Fast Report Template Page

46

16 Writing With Formatted Masks (tutor08d)
—- Run LPL Code , HTML Document –
Problem: This is the same model as tutor07.lpl, except that we use a unit cost per Hours
production and the profit is maximized However, now we use a more complicated masks for
model output using the Write statement.

Listing 16: The Complete Model implemented in LPL [2]� �
model TUTOR08d " W r i t i n g With F o r m a t t e d Masks ";

/ ∗ $I ' t u t o r . i n c ' ∗ / −− r e a d t h e d a t a
parameter CpH := 5 " Cos t p e r hour ";
−−P r i c e { i }:=2∗ P r i c e ;
variable Robots{i};
constraint
Steps{j}: sum{i} Hours * Robots <= Capacity;
Order{i}: Robots >= Ordered;

maximize profit: sum{i} Price*Robots -sum{i,j} CpH*Hours*Robots;
Write(' OUTPUT of the TUTOR08d model\n \

----------------------------\n \
type of number of already Price Cost\n \
robot robot ordered unit unit\n \
---\n');

Write{i}(' %7s %4d %3d %3d %3d %15s\n',
i,Robots,Ordered,Price, sum {j}CpH*Hours,
if (Price<sum {j}CpH*Hours,'loosing money','ok'));

Write(' ---\n\n \
Total of revenue : %9.2f\n \
Total of costs : %9.2f\n \
Total of profit : %9.2f\n',

sum {i}Price*Robots,
sum {i,j}CpH*Hours*Robots,
sum {i}Price*Robots - sum {i,j}CpH*Hours*Robots);

end� �
LPL Modeling Steps

1. The Write statement can be used to print formatted text defined by the user distrubuted
over several lines. The mask contains line feed chars (\n) to write a new line. At the
end of a mask line we use a back-slash char \ to remove the following line feed and the
beginning blank chars on the following line within the mask.

2. The Write expression instructs LPL how to fill this mask.
Note: The model tutor08e15 lists all format specifiers that can be used in LPL.
Questions

1. Double the Price vector and see what happens.
Answers

1. To double the prices, one only needs to add an instruction before the declaration of the
variables, for example. Hence, add the line

15https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08e

47

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08d
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08d
https://matmod.ch/lpl/HTML/tutor08d.html
https://matmod.ch/lpl/HTML/tutor08e.html

Price{i} := 2*Price;

Then run the model again. The result shows that we are loosing money on Robot4 and
Robot5 only now.

48

17 Write-Format Examples (tutor08e)
—- Run LPL Code , HTML Document –
Problem: This model shows all output formatting options with the Write statement as ex-
plained in the reference manual of LPL in Chap. 9.2.2. These options correspond to the speci-
fications which are used by other languages such as Java.

Note that these specifiers can also be used in the Format function that returns the formatted
string. An example can be seen at the end of the LPL code.

Listing 17: The Complete Model implemented in LPL [2]� �
model TUTOR08e " Wri te −Format Examples ";

parameter a := 1234.56;
integer i := 1234;
string b := 'abcdefg';
date d := @2004-11-13T10:30:15;

Write('d (integer) : %d\n' ,-i);
Write('u (unsigned) : %u\n' , i);
Write('h (hexadeci) : %x\n' , i);
Write('o (octal) : %o\n' , i);
Write('f (float) : %f\n' , a);
Write('f (width 5, 1 dec): %5.1f\n' , a);
Write('f (right adjusted): %-15.3f\n', a);
Write('f (left adjusted) : %15.3f\n' , a);
Write('e (e-notation) : %.2e\n' , a);
Write('e (e-notation) : %16.7e\n' , a);
Write('g (same as e or f): %16.7g\n' , a);
Write('n (with 1000 sep) : %n\n' , a);
Write('n (4 decimals) : %.4n\n' , a);
Write('n (1 decimal) : %7.1n\n' , a);
Write('m (currency) : %m\n' , a);
Write('m (7,3 width) : %7.3m\n' , a);
Write('b (boolean true) : %b\n' , 1);
Write('b (boolean false) : %b\n' , 0);
Write('s (string) : %s\n' , b);
Write('s (width 10,5) : %10.5s\n' , b);
Write('z (fraction) : %z\n' , .75);
Write('z (fraction) : %z\n' , 6.125);
Write('z (fraction) : %z\n' , 6.875);
Write('\n-- date now--\n');
−− A l l d a t e / t ime f o r m a t s p e c i f i e r s
Write('tH (Hour) : %tH\n' , d);
Write('tk (Hour) : %tk\n' , d);
Write('tI (Hour) : %tI\n' , d);
Write('tl (Hour) : %tl\n' , d);
Write('tM (Min) : %tM\n' , d);
Write('tS (Secs) : %tS\n' , d);
Write('tL (mSecs) : %tL\n' , d);
Write('tp (ampm) : %tp\n' , d);
Write('tB (month) : %tB\n' , d);
Write('tb (month) : %tb\n' , d);
Write('th (month) : %th\n' , d);
Write('tm (month) : %tm\n' , d);
Write('tA (wday) : %tA\n' , d);
Write('ta (wday) : %ta\n' , d);
Write('tY (year) : %tY\n' , d);

49

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08e
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor08e
https://matmod.ch/lpl/HTML/tutor08e.html

Write('ty (year) : %ty\n' , d);
Write('td (day) : %td\n' , d);
Write('te (day) : %te\n' , d);
Write('tR (h:m) : %tR\n' , d);
Write('tT (h:m:s) : %tT\n' , d);
Write('tr (h:m:s) : %tr\n' , d);
Write('tD (y-m-d) : %tD\n' , d);
Write('tR (y-m-d) : %tF\n' , d);
Write('tc (all) : %tc\n' , d);
string parameter mydate:=Format('DAY:(%tc) TIME:(%tT)', d,d);
Write('\nThe complete date is: %s\n', mydate);
set s:=1..5;
Write('\n%s', {s} Format('%2s^2=%1d ',s,s^2));

end� �
The Format function is especially useful in combination within a Write. The last Write

in code shows how. The Format function returns a string. This string is concatenated over all
elements of s and returned as parameter to the Write, that outputs the whole as a string.

50

18 Submodels (output locally only) (tutor09)
—- Run LPL Code , HTML Document –
Problem: This model show how to arrange a model into several submodels that can be called
by the main model.

Listing 18: The Complete Model implemented in LPL [2]� �
model TUTOR09 " Submodels (o u t p u t l o c a l l y on ly) ";

mydata;
writedata;
ClearData(TUTOR09);
readdata;
set i; j;
parameter a{i}; b{j};
string parameter s{i};
−−−
model mydata " d e f i n e some d a t a ";
SetRandomSeed(1);
i := 1..10;
a{i} := Trunc(Rnd(1,10));
s{i} := ['AA','BB','CC','DD','EE','FF','GG','HH','II','JJ'];
j := 1..11;
b{j} := j^2;

end
model writedata " w r i t e t h e d a t a t o a f i l e ";
Write('tutor09out.txt','-- Data generated by LPL\n\n');
Write('Table 1 -- (i a s)\n');
Write{i}(' %3s %3d %4s\n', i,a,s);
Write('\nTable 2 -- (j b)\n');
Write{j}(' %3s %4d\n', j,b);

end
model readdata;
Read('tutor09out.txt,%1:Table');
Read{i}('%1', i,a,s);
Read{j}('%2', j,b);

end
end� �

LPL Modeling Steps

The model contains three submodels, calledmydata, writedata, andreaddata. The main
model (TUTOR09) calls them in this order. It also calls a function Cleardata(TUTOR09)
that clears all the data defined in the main model.

The main model also declares some tables: a set i and j, two numerical vectors a{i} and
b{j}, and a string vector s[i} .

The three submodel can access and modify the ‘global” data defined in the main model. The
first submodel mydata sets the random seed and fills all the data vectors. Note that a table
assignment such as *s{i} := [...] must begin with a star, to specify that the data are
assigned through an internal table an not through an expression.

The submodel writedata write the data to a file subdivided into two blocks.
The submodel readdata reads these data again from that file.
The generated file is as follows:

Questions

51

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor09
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor09
https://matmod.ch/lpl/HTML/tutor09.html

1. Replace SetRandomSeed(1) by SetRandomSeed(2). What happens?

Answers

1. A different data set is now generated for a{i}, since this the only vector generated ran-
domly, using the function Rnd that returns a uniormly distributed random number.

52

19 Sparse Tables (tutor10)
—- Run LPL Code , HTML Document –
Problem: This model shows sparse data tables based on expressions.

Listing 19: The Complete Model implemented in LPL [2]� �
model TUTOR10 " S p a r s e T a b l e s ";

set i; j;
parameter Ordered{i}; Price{i}; Capacity{j};

Hours{i,j | i<>10 or j<>4};
variable Robots{i | Ordered>6};
−− r e a d t h e d a t a h e r e
Read('tutor.txt,%1:Table');
Read{i}('%1', i,Price,Ordered);
Read{j}('%2', j,Capacity);
Read{i}('%3', i, {j}Hours);
constraint
Steps{j}: sum{i} Hours * Robots <= Capacity;
−−S t e p s { j | j <=3}: sum{ i } Hours ∗ Robots <= C a p a c i t y ;
Order{i}: Robots >= Ordered;

maximize profit: sum{i} Price * Robots;
Writep(profit,Robots,Hours);

end� �
LPL Modeling Steps

Sparsity is one of the key concept in LPL. Multidimensional tables are stored and handeled in a
sparse way, which means that only a subset of the Cartesian Product of table elements are stored.
A four-dimensional table of only 1000 elements in each dimension goes beyond every memory
allocation, if considered as full table. It is, therefore, essential to deal with sparsity. LPL has
efficient ways to deal with it.

1. An index-set can be limited by an arbitrary expression, for example. The following dec-
laration

variable Robots{i | Ordered > 6};

means that a variable Robots is declared for every element in i such that the order is
larger then 6. In mathematical notation:

𝑥𝑖, ∀{𝑖|𝑖 ∈ 𝐼 = {1… 𝑛} , 𝑂𝑖 > 6}

In our case it means that the three variables Robot[4], Robot[5] and Robot[10]
are discarded from the model.

2. A tuple list {i,j} also represents a set and can, therefore also be limited by expressions.
Hence, the declaration:

Hours{i,j | i<>10 or j<>4};

means that there exists a value within table Hours for each combination of (𝑖, 𝑗) ∈ 𝐼 × 𝐽
such that 𝑖 ≠ 10 or 𝑗 ≠ 4.

53

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor10
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor10
https://matmod.ch/lpl/HTML/tutor10.html

3. The conditioni<>10 or j<>4 excludes one tuple: ’declareHours for all tuples(i,j)
except for 𝑖 = 10 and 𝑗 = 4. (The number 10 and 4 indicate the positions of the elements
within the sets. Sets are considered always as ordered in LPL.) (The condition could also
be written as ~(i=10 and j=4). If the expression evaluates to zero, it is interpreted
as ’tuple does not exist’, else as ’tuple does exist’.

4. Any index-list may be followed by a condition. Suppose we want the maximizing function
only summed up over all Robots yielding a price greater than 100. We could then write
the maximizing function as follows:

maximize profit: sum{i | Price>100} Price * Robots;

Questions

1. How does the model change, if one modifies the condition Ordered>5 to Ordered>6
in the variable declaration?

2. Change the constraint definition Steps{j}:... to Steps{j|j<=3}.... Analyse
the solution.

Answers

1. The variable Robot4 is removed from the model. Note that it is enough to remove it at
the declaration. Summation over "all" i then discards them automatically too.

2. The solution did not change! Why? This is because all the constraints Steps[4] to
Steps[8] are not “tight”, that is, they are not at their maximal capacity.

54

20 Predefined Functions (tutor11)
—- Run LPL Code , HTML Document –
Problem: In this model, all data are generated by a random generator. The model shows and
explains several functions used in LPL.

Listing 20: The Complete Model implemented in LPL [2]� �
model TUTOR11 " P r e d e f i n e d F u n c t i o n s ";

SetRandomSeed(1);
set i := [1..10]; j := [1..8];
parameter
Ordered{i} := Trunc(Rnd(3,20));
Price{i} := Trunc(Rnd(100,200));
Capacity{j} := Trunc(Rnd(3000,5000));
Hours{i,j} := Trunc(Rnd(0,9));

variable Robots{i};
constraint
Steps{j}: sum{i} Hours * Robots <= Capacity;
Order{i}: Robots >= Ordered;

maximize profit: sum{i} Max(Price,100) * Robots;
/ ∗ a n o t h e r f o r m u l a t i o n i s :

p r o f i t : sum (i) I f (P r i c e <100 ,100 , P r i c e) ∗ Robots ; ∗ /
Writep(profit,Robots);

end� �
LPL Modeling Steps

All data are generated by a random generation procedure.
1. The seed of the random generator is initialized by SetRandomSeed(1).
2. The function Rnd(a,b) generates a uniform number between a and b. The function

Trunc(a) truncates the number a to an integer.
3. Other similar functions areCeil(x) (returns the largest integer smaller thanx), Round(x)

(returns the rounded integer of x), Sin(x) (returns the sinus of x), Abs(x), Tan(),
Cos(), Log(), and many others,

4. The Max function returns the larger of the two operands. Hence, Max(12,10 means 12.
The smaller of-function is Min.

5. The if function takes at least two arguments. The first is a condition. The second argu-
ment is evaluated if the condition evaluates to non-zero (true), else the third argument is
evaluated. If the third argument is missing, zero is assumed. Example:
the statement a := if(3=4 , 4 , 3); will assign 3 to a.

6. The if can have more than three arguments which is interpreted like a switch statement
in C. For example:
If(a,b,c,d,e,f,g)

means:“if a is true (non-zero) return b, else if c is true return d else if e is true return f,
else return g. Of course, all the parameters a to g can be arbitrary expressions.

55

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor11
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor11
https://matmod.ch/lpl/HTML/tutor11.html

Questions

1. How can the prices be generated as a normal distributed vector with mean 100 and a
deviation of 20?

2. Sum all prices that are larger than 120 and assign the value to a new parameter.

Answers

1. Use the function Rndn(m,d), it returns a normally distributed random number with
mean m and standard deviation d. The statement is:

Price{i} := Rndn(100,20);

2. The statement is as follows:
parameter A := sum{i|Price>120} Price;

There is another way to express the same expression as follows:
parameter A := sum{i} if(Price>120,Price);

Note the if with two parameters returns zero as default if the condition is false (equal to
zero).

56

21 Index Operators (tutor12)
—- Run LPL Code , HTML Document –
Problem: Indexed operators are a powerful mean to concisely write large expressions. In math-
ematical notation, for example, one can write

∑

𝑖∈{1…1000}
𝑥𝑖

which is a shortcut for
𝑥1 + 𝑥2 + 𝑥3 +…+ 𝑥999 + 𝑥1000

The operator ∑ is called indexed operator for summig up over a set. There exist other such
operators, for example max (that returns the largest element in a list) or argmin (which returns
the list position of the minimal element). In LPL, these operators can be used in the same way.

Listing 21: The Complete Model implemented in LPL [2]� �
model TUTOR12 " Index O p e r a t o r s ";

/ ∗ $I ' t u t o r . i n c ' ∗ /
set i1{i} :=
sum{j}Hours>24 and (forall{j}(Hours<8) or exist{j}(Hours=0));

variable Robots{i|i1};
constraint
Steps{j}: sum{i} Hours*Robots <= Capacity;
Order{i}: Robots >= Ordered;

maximize profit: sum{i} Price*Robots;
parameter a:=max{j} min{i} Hours;
Writep(profit,Robots);
Write{i|sum{j}Hours>24}('%s uses more than 24h to be produced\n',i);
Write{i|forall{j}(Hours<8)}('%s used less then 8h in each step\n',i);
Write{i|exist{j}(Hours=0)}('%s does not use some steps\n',i);
Write{j|atleast(5){i}(Hours>5)}('In %s at least 5 robots use more

than 7h\n',j);
end� �

LPL Modeling Steps

In various locations of the model we use index operators.
1. The expression sum{i} Price*Robots, used in previous models, means the same as

∑

𝑖 𝑃𝑟𝑖𝑐𝑒𝑖 ⋅ 𝑅𝑜𝑏𝑜𝑡𝑠𝑖.
2. Two other operators are used: forall and exist. Let’s explain the expression contain-

ing them.
3. The partial expression sum{j} Hours[i,j], calculates the number of hours used to

produce a Robot i (∑𝑗 𝐻𝑖,𝑗 , ∀𝑖). It returns a value for each 𝑖.
The expressionsum{j} Hours{i,j] > 24 returns for each 𝑖 true or false, depending
on whether the sum is larger than 24. (This is the case for Robot 1, 3, 4, 5, 7, and 8, as
can be verified with the first Write statement.

4. The expression forall{j}(Hours<8) returns true or false, depending on whether all
values of 𝐻𝑜𝑢𝑟𝑠𝑖,𝑗 for a particular 𝑖 are smaller than 8. (This is the case for Robot 3, 7, 9,
and 10.)

57

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor12
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor12
https://matmod.ch/lpl/HTML/tutor12.html

5. The expressionexist{j}(Hours=0) returns true or false, depending on whether there
exists a value of 𝐻𝑖,𝑗 for a particular 𝑖 that is zero. This is the case for all robots except
10.)

6. These three expressions combined form a subset defined as i1{i}. Hence LPL’s way to
define subsets is indexing over a set

set i1{i};

7. The operator atleast is another (Boolean) indexed operator, that returns true if at least
a given number of Boolean expressions are true.

Questions

1. What is returned by: max{i} Price ?
2. What is returned by: argmin{i} Price ?
3. What means: max{i} min{j} Hours ?
4. What means: atleast(5){i,j} (Hours>7) ?

Answers

1. 400. This is the largest value in the price list. Robot9 costs 400.
2. 4. The smallest price value (50) is at the fourth position within the price list (Robot4 costs

50).
3. It means “choose the smallest value in each column j of the matrix Hours{i,j} and

from the obtained list choose the largest value”. It is 4, because in step 1 the smallest value
is 4.

4. It means that “at least five values in the table Hours are greater than 7”. True or false?
This expression returns true (1).

58

22 Expression Evaluation (tutor13)
—- Run LPL Code , HTML Document –
Problem: An LPL model does not need to be an optimisation model. Any sequence of declara-
tions and instructions can be defined.

Listing 22: The Complete Model implemented in LPL [2]� �
model TUTOR13 " E x p r e s s i o n E v a l u a t i o n ";

/ ∗ $I ' t u t o r . i n c ' ∗ /
variable Robots{i};
constraint
Steps{j}: sum{i} Hours*Robots <= Capacity;
Order{i}: Robots >= Ordered;
C: Robots[9]=420;

maximize revenue: sum{i} Price*Robots;
parameter
d{j}:=sum{i}Ordered*Hours;
rCapa{j}:=Capacity-d;
MaxR{i} := Floor(min{j|Hours} rCapa/Hours);

Write(' Robot Ordered MaxR Total\n \
-----------------------------------\n');

Write{i}(' %-7s %3d %3d %4d\n',
i,Ordered,MaxR,MaxR+Ordered);

Writep(revenue,Robots,Price,Ordered,Capacity,rCapa,Hours);
end� �

LPL Modeling Steps

The data are read from the file tutor.inc.
1. min and max are two index-operators which returns the minimum or maximum of a list

of expressions.
2. The expression sum{i}Ordered*Hours returns for each step j the used capacity of

the already Ordered robots. rCapa{j} is then the capacity that remains for the opti-
mized production.

3. The parameter MaxR{i} calculates for each robot type i the maximally producible quan-
tity of robots with respect to the capacities that is different from zero in the table Hours
over j. Note that the condition “different from zero” is necessary in the definition other-
wise it will be simply zero.

Questions

1. Verify by solving the model that one cannot produce more than 520 units of robots of type
9.

2. Robot type 9 has the highest price. So it makes sense to produce the maximum possible –
that is 520 – of it. What is the revenue, if one fixes the production of robot type 9 to 520?

3. Why does the previous fixing of variable 9 not generate the maximal revenue?
4. Simplify the expression max{i} max{j} Hours[i,j].

59

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor13
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor13
https://matmod.ch/lpl/HTML/tutor13.html

Answers

1. Add a the following constraint
constraint C: Robots[9]>=521;

and solve the model. The model is infeasible (see message left below on the lplw screen).
The model has no solution because the capacity limits the production of robot of type 9
to 520.

2. The revenue is 222950. This is less than the maximally possible revenue of 232920.59.
3. The reason is not so easy to see. A production of 520 units of robots 9 would use all

capacity in step 3. However, Robot 2 – which has the second highest price – does not use
that much capacity in step 3. So may be it would be worthwhile to leave capacity for robot
2 in order to get out more of the remaining capacities. That is indeed the case: We must
reduce the production of Robot 9 to 420 to allow more production for robot 2, in order to
increase revenue.

4. The two indices can be combined into one, One can use the second name H, and the index-
list [i,j] is not necessary. Hence, it is: max{i,j} Hours.

60

23 Goal Programming (tutor14)
—- Run LPL Code , HTML Document –
Problem: LPL can be used to model soft constraints using goal programming. The idea is – in
our small example – that we do not know exactly the capacity of a process. That is, we want to
integrate uncertainty, see explanation below.

Listing 23: The Complete Model implemented in LPL [2]� �
model TUTOR14 " Goal Programming ";

variable Marie; Jules;
PTesting; Nrevenue; Prevenue; −− s l a c k v a r i a b l e s

parameter dP:=18500 " d e s i r e d r e v e n u e ";
constraint
Component: 5*Marie + 5*Jules <= 350;
Mounting: 4*Marie + 8*Jules <= 480;
Testing: 6*Marie + 2*Jules -PTesting <= 300;
Order1: Marie >= 20;
Order2: Jules >= 15;
revenue: 300*Marie + 200*Jules -Prevenue+Nrevenue = dP;
−−TestBound : P T e s t i n g =10;

minimize deviation: Nrevenue + PTesting + Prevenue;
−−minimize d e v i a t i o n : Nrevenue + 200∗ P T e s t i n g + Prevenue ;
Writep(deviation,Marie,Jules,Nrevenue,PTesting);

end� �
LPL Modeling Steps

Let’s return to the simplest model tutor02 with one exception.
1. Suppose we do not know exactly the capacity of Testing, but we know that it is at least

300.
2. Furthermore, we will be happy with a revenue of “about” 18500.
3. This problem would be infeasible as we know from problem tutor02 (since the maximizing

revenue is 18000).
4. Hence, we add a positive slack variable (PTesting) in order to see how much the ca-

pacity of Testing has to be expanded exceeding 300 to attain our objective.
5. In the revenue constraint, we add two slack variables to cover a positive or negative devi-

ation (Prevenue and Nrevenue).
6. We do not maximize revenue, as before, but we minimize a deviation measure.
7. The deviation of the positive PTesting and the negative Nrevenue slacks is mini-

mized.
8. As can be seen from the solution, the optimum 18500 can be attained if we allow the

Testing constraint to exceed its capacity of 300 by 20 units.
9. If we add an upper bound of 10 to PTesting (TestBound)then we can still attain a revenue

of 18250.

61

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor14
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor14
https://matmod.ch/lpl/HTML/tutor14.html

Questions

1. Modify the value of dP from 18500 to 20500 by steps of 200. What do you notice when
solving each time?

2. Change the model in a way to make PTesting as small as possible.

Answers

1. The revenue cannot be augmented over 19500, even if the "desired revenue" dP gets
higher. This is because of the Components constraint is at 100% percent of its capacity
and the number of Jules cannot be lowered below 15, because of the bound imposed
by Order2 and consequently the number of Marie cannot be higher than 55. The next
model tutor15.lpl shows how these calculations can be implemented in a single LPL
model code.

2. We could replace the minimizing function to minimize dev: PTesting;. Another
way is to leave the minimizing function, but to impose a higher "penalty" to the term
PTesting by adding a factor, for example: 200*PTesting. Penalising is a general
method to formulate multiple objectives.

62

24 Loop Programming (tutor15)
—- Run LPL Code , HTML Document –
Problem: This model is the answer to the first question in the previous model tutor1416. How
to implement a sequence of optimisations in a single model? We call this also “parameterized
optimisation”.

Listing 24: The Complete Model implemented in LPL [2]� �
model TUTOR15 " Loop Programming ";

variable Marie; Jules;
PTesting; Nrevenue; Prevenue; −− s l a c k v a r i a b l e s

parameter dP:=18500 " d e s i r e d r e v e n u e ";
constraint
Component: 5*Marie + 5*Jules <= 350;
Mounting: 4*Marie + 8*Jules <= 480;
Testing: 6*Marie + 2*Jules -PTesting <= 300;
Order1: Marie >= 20;
Order2: Jules >= 15;
revenue: 300*Marie + 200*Jules -Prevenue+Nrevenue = dP;
−−TestBound : P T e s t i n g =10;

−−− l oop
set i:=1..10;
parameter dP1{i}; Marie1{i}; Jules1{i}; revenue1{i};
for{i} do
minimize deviation: Nrevenue + PTesting + Prevenue;
dP := dP+200;
dP1[i]:=dP; Marie1[i]:=Marie;
Jules1[i]:=Jules; revenue1[i]:=300*Marie + 200*Jules;

end;
Write(' dP Marie Jules revenue\n \

----------------------------------\n');
Write{i}(' %5d %3d %3d %5d\n',

dP1,Marie1,Jules1,revenue1);
end� �

LPL Modeling Steps

The only modification takes place at the minimize function. It is embedded in a loop: The
model is solved 10 times each time with a different parameter dP.

1. First we add a set i. The cardinality of this set (here 10) is the number of optimisations.
2. for is another index operator that can be used to loop through a set, in our case over i.
3. Within the loop, the deviation is minimized and the parameter dP is increased in steps of

200.
4. Certain data are stored for later output and the loop is repeated.

Questions

1. What happens if the capacity of Mounting is extended? Can we make more revenue?
16https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor14

63

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor15
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor15
https://matmod.ch/lpl/HTML/tutor15.html
https://matmod.ch/lpl/HTML/tutor14.html

2. We would like to rise dP by 2% within the loop. How can this be done?

Answers

1. Nothing happens, the revenue is the same. This is because Mounting is never the limit-
ing constraint. We would need to extend the Component capacity.

2. Replace the instruction dP:=dP+200; with dP:=Trunc(1.02*dP); and run the
model again.

64

25 Logical Constraints (tutor16)
—- Run LPL Code , HTML Document –
Problem: We include some logical constraints to our well know basic model tutor0617.

Listing 25: The Complete Model implemented in LPL [2]� �
model TUTOR16 " L o g i c a l C o n s t r a i n t s ";

/ ∗ $I ' t u t o r . i n c ' ∗ / −− a d a t a f i l e i s i n c l u d e d h e r e
integer variable Robots{i} [0..500];
constraint
Steps{j}: sum{i} Hours*Robots <= Capacity;
Order{i}: Robots >= Ordered;
Log1: Robots[2]>=130 -> Robots[6]>=30;
Log2: atleast(5){i} (Robots[i]>=21);
Log3: Robots[3]>=10 and Robots[4]>=15;

maximize revenue: sum{i} Price*Robots;
Writep(revenue,Robots);

end� �
LPL Modeling Steps

The basic model (without the logical constraint Log1, Log2, Log3, and Log4) has the follow-
ing solution:
revenue = 232850.00
Robot1 Robot2 Robot3 Robot4 Robot5 Robot6 Robot7 Robot8 Robot9 Robot10

20 266 7 6 5 8 9 8 420 5

LPL allows to add Boolean operators within constraints. LPL translates these constraints
automatically into mathematical linear constraints by introducing binary (0-1) variables. These
feature allow the modeler to formulated certain requirements directly in a logical context.

Example: Suppose the following condition is required; “If the number of robot type 2 is
larger or equal than 130 then at least 30 of robot type 6 should also be manufactured”. This is a
logical implication formulated as:

𝑅𝑜𝑏𝑜𝑡2 ≥ 130 → 𝑅𝑜𝑏𝑜𝑡6 ≥ 30

In LPL, this can be formulated in a very similar way:
constraint Log1: Robots[2]>=130 -> Robots[6]>=30;

Adding this constraint to our basic model produces the following solution:
revenue = 227450.00
Robot1 Robot2 Robot3 Robot4 Robot5 Robot6 Robot7 Robot8 Robot9 Robot10
20 254 7 6 5 30 9 8 407 5

We can verify that the condition is fulfilled: Robots[2] is larger than 130, therefore Robots[6]
is at least 30 (which is the case in this solution). Of course, the revenue drop to 227450. That is the
“price” the fulfill the condition.

LPL also allows one to use logical indexed operators. Suppose, we want to impose the following
condition: “For at least 5 different type of robots, we need to manufacture a minimal quantity of 21”. In
LPL, this can directly be formulated as follows:

17https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor06

65

https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor16
https://lpl.matmod.ch/lpl/Solver.jsp?name=/tutor16
https://matmod.ch/lpl/HTML/tutor16.html
https://matmod.ch/lpl/HTML/tutor06.html

constraint Log2: atleast(5){i}(Robots[i]>=21);

Adding this constraint to the previous version (with Log1 produces the following optimal solution:
revenue = 225550.00
Robot1 Robot2 Robot3 Robot4 Robot5 Robot6 Robot7 Robot8 Robot9 Robot10

21 231 7 6 5 30 9 8 405 21

One can easily verify that the condition Log2 also holds: At least 5 different robot types are manu-
factured at minimal quantity of 21. At the cost of a further reduction in the revenue.

Let’s add a third condition:“at least 10 units of robot 3 and at least 15 of robot 4 must be manufac-
tured”. The condition in LPL is:

constraint Log3: Robots[3]>=10 and Robots[4]>=15;

The optimal solution with the three first conditions becomes:
revenue = 221000.00
Robot1 Robot2 Robot3 Robot4 Robot5 Robot6 Robot7 Robot8 Robot9 Robot10
21 129 10 15 5 8 9 21 445 21

Note also that the condition Log1 is not used anymore: Because the number of robots of type 2 drops
to 129 (which is smaller than 130) there is no need that the number of robot of type 6 is at least 30.

The condition Log3 can easily be implemented without any logical operators: it says simply that
Robots[3] is bounded from below to 10 and Robots[4] has a lower bound of 15. The condition
Log3 just emphasises simply that the Boolean and operator is the default operator of a list of constraint.
Questions

1. Formulate the constraint that none of the Robots type can exceed 100 pieces.
2. Formulate the condition: “If the number of robot type 1 is larger or equal than 10 then the number

of robot type 5 must be larger or equal than 12 or the number of robot type 7 must be larger or
equal than 10.”

Answers

1. A simple version is to set a lower bound for every variables as follows:
constraint Log4{i}: Robots<=100;

Another way to formulate it as a logical condition is:
constraint Log4: nor{i} (Robots>=100);

nor is another index operator which formulate the logical "none". Do not confound it with the
operator nand. The operator nand – another operator in LPL – means “not all”. By the way, LPL
translates the constraint Log4 automatically into ordinary variable bounds (see EQU-file).

2. The constraint in LPL is as follows:
constraint Log5: Robots[1]>=10 -> Robots[5]>=12 or Robots

[7]>=10;

66

26 Some Basic Expressions / Writes (learn01)
—- Run LPL Code , HTML Document –
Problem: This code show some simple operations and functions as well as Write formatted output using
Write().

Listing 26: The Complete Model implemented in LPL [2]� �
model learn01 "Some B a s i c E x p r e s s i o n s / W r i t e s ";

parameter
x := 5^7 " power o p e r a t o r ";
y := 1=1 or 0 and ~0 " Boolean e x p r e s s i o n ";
z1 := Sin(34) " S i n u s ";
z2 := Log(1000) " l o g o f base e ";
z3 := Max(34,6) " r e t u r n t h e l a r g e r ";
z3a:= Min(34,6) " r e t u r n t h e s m a l l e r ";
z4 := 45/67*976 " a r i t h m e t i c ";
z5 := 1<2 " Boolean ";
z6 := x " a s s i g n m e n t ";
z7 := x/56 " i t em ";
z8 := y " Boolean a s s i g n ";

string parameter
z9 := 'abcd' & 5 " S t r i n g e x p r e s s i o n (c o n c a t) ";
zA := '' & Sin(x) " c a s t d ou b l e t o s t r i n g ";

date parameter zB :=@2018-12-08 " a d a t e ";
Write('5^7 = %5d\n\

1 or 0 and ~0 = %1d\n\
Sin(34) = %6.4f\n\
Log(1000) = %8.6f\n\
Max(34,6) = %2d\n\
Min(34,6) = %2d\n\
45/67*976 = %7.3f\n\
1<2 = %1d\n\
x = %5d\n\
x/56 = %8.4f\n\
y = %1d\n\
\'abcd\' & 5 = %s\n\
\'\' & Sin(x) = %s\n\
date as int = %d\n\
a date format = %tc\n'
, x, y, z1,z2,z3,z3a,z4,z5,z6,z7,z8,z9,zA,zB,zB);

end� �

67

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn01
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn01
https://matmod.ch/lpl/HTML/learn01.html

27 Basic Indexed Expressions/Tables (learn01a)
—- Run LPL Code , HTML Document –
Problem: This code show some simple operations and functions.

Listing 27: The Complete Model implemented in LPL [2]� �
model learn01a " B a s i c Indexed E x p r e s s i o n s / T a b l e s ";

−−− T a b l e s e x p r e s s i o n s
set i := [I1 I2 I3 I4 I5 I6 I7];

j := [J1 J2 J3 J4 J5 J6 J7 J8 J9];
k := [K1 K2 K3 K4 K5 K6 K7 K8 K9 K10];

parameter a{i,j} := i*j;
b{i,j} := i^2+j;
c{j,k} := Sin(j)+Log(k);

−−−− Ma t r ix c a l c u l a t i o n
parameter

d{i,j} := a[i,j] + b[i,j] " m a t r i x a d d i t i o n ";
e{i,k} := sum{j} a[i,j] * c[j,k] " m a t r i x m u l t i p l i c a t i o n ";

Writep(d,e);
−−−− Random t a b l e s , s p a r s e t a b l e s
SetRandomSeed(10) " s e t s t h e random seed "
parameter ra{i,j,k} := Rnd(10,20) " a 3−dimen . t a b l e ";

f{i,k} := sum{j} 10*ra[i,j,k] + if(e[i,k]>100, e[i,k] , 100);
g{i,k|i<k} := 3 " s p a r s e t a b l e ";

Writep(ra,f,g);
−−−− 6 . t h e f i r s t 50 F i b o n a c c i numbers
set s := [1..50];
parameter h{s}; H{s};;
h[1]:=1 , h[2]:=2,
{s|s>2} (h[s] := h[s-1]+h[s-2]);
{s} (H := if(s=1,1,s=2,2,H[s-1]+H[s-2])) " t h e same ";
Write('-----FIBONACCI NUMBER 1-50:\n');
Write{s}('%2s %13d %13d\n', s,h,H);

end� �

68

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn01a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn01a
https://matmod.ch/lpl/HTML/learn01a.html

28 The Addm function (learn01b)
—- Run LPL Code , HTML Document –
Problem: The function Addm() adds an element dynamically to a set, affecting all involved tables as
well.

Listing 28: The Complete Model implemented in LPL [2]� �
model learn01b " The Addm f u n c t i o n ";

set i := [I1 I2 I3 I4 I5 I6 I7];
j := [J1 J2 J3 J4 J5];

parameter a{i,j} := i*j;
Writep(i,a);
Addm(i,'ABC') " add d y n m a i c a l l y an e l e m e n t t o s e t i ";
Writep(a,i);
{j} (a[#i,j]:=100+j) " f i l l t h e added s l i d e ";
Writep(a,i);
set k:=1..10;
Addm(k,'HJK') " a n o t h e r example : add an e l e m e n t t o s e t m";

end� �

69

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn01b
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn01b
https://matmod.ch/lpl/HTML/learn01b.html

29 Some Math and Boolean Functions (learn02)
—- Run LPL Code , HTML Document –
Problem: This model shows further operators and functions of LPL.

Listing 29: The Complete Model implemented in LPL [2]� �
model learn02 "Some Math and Boolean F u n c t i o n s ";

−−−− 1) p r e d e f i n e d f u n c t i o n s i n LPL
set i := [1..6] ;
parameter

a{i} := [8.99 8.01 -8.99 -8.01 8.5 -8.5];
b{i} := [1.8 -8 4.01 7.35 9 -1.3];
c{i} := [0 20 0 40 50 60];
a1{i} := Ceil(a);
a2{i} := Floor(a);
a3{i} := Trunc(a);
a4{i} := Abs(a);
p{i} := i;
maxi{i} := Max(a,b); −−which i s l a r g e r ?
mini{i} := Min(a,b); −−which i s s m a l l e r ?
ab{i} := Abs(if(Abs(a)>Abs(b) , a , b));
ln_b{i} := Log(Abs(b));
expo{i} := Exp(a/7);
I_10_20{i} := Rnd(20,30); −− un i fo rm d i s t r i b u t e d i n t h e r a n g e

[2 0 , 3 0]
N_10_1{i} := Rndn(10,1); −− normal d i s t r i b u t e d , mean=10 , s t d =1

Write(' a b Ceil Floor Trunc Abs Pos Max Min
Abs \

Ln(b) Exp Rnd Rndn\n');
Write{i}('%6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f

%6.2f \
%6.2f %6.2f %6.2f\n', a,b,a1,a2,a3,a4,p,maxi,mini,ab,ln_b,expo,
I_10_20,N_10_1);

−−−− 2) Index − o p e r a t o r s
parameter

su := sum{i} b[i]; −− sum a l l b [i]
pr := prod{i} b[i]; −− p r o d u c t
ma := max{i} b[i]; −− t h e maximum
mi := min{i} b[i]; −− t h e minimum
pma := argmax{i} b[i]; −− p o s i t i o n o f t h e maximum
pmi := argmin{i} b[i]; −− p o s i t i o n o f t h e minimum
ex := exist{i} c[i]; −− i s t h e r e any non−z e r o ? (TRUE=1)
fo1 := forall{i} c[i]; −− a r e t h e r e a l l non−z e r o e s ? (FALSE=0)
fo2 := forall{i} b[i];
atl3:= atleast(3){i} c[i]; −− a r e a t l e a s t 3 non−z e r o ? (TRUE=1)
atl4:= atmost(3){i} c[i]; −− a r e a t most 3 non−z e r o ? (FALSE=0)
atm := atmost(2){i} (c[i]=0); −− a r e a t most 2 e q u a l t o z e r o ? (

TRUE=1)
exa := exactly(4){i} c[i]; −− a r e e x a c t l y 4 non−z e r o ? (TRUE=1)
exa1:= exactly(3){i} c[i]; −− a r e e x a c t l y 3 non−z e r o ? (FALSE=0)

Write('results of all index-operators\n');
Write('%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f \n %d %d %d %d %d %d %d %d

\n',
su,pr,ma,mi,pma,pmi,ex,fo1,fo2,atl3,atl4,atm,exa,exa1);

end� �

70

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn02
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn02
https://matmod.ch/lpl/HTML/learn02.html

30 Logical Operators (learn02a)
—- Run LPL Code , HTML Document –
Problem: This model shows further operators and functions of LPL.

Listing 30: The Complete Model implemented in LPL [2]� �
model learn02a " L o g i c a l O p e r a t o r s ";

set t := [1..4];
parameter x{t} := [1 1 0 0]; y{t} := [1 0 1 0];
Write('\n

--------------LOGICAL operators------------------------
x y | and or NAND nor XOR -> <- <->
---------|---\n');

Write{t}(
' %1d %1d | %1d %1d %1d %1d %1d %1d

%1d %1d\n',
x,y,x and y,x or y,~(x and y),~(x or y),x xor y,x->y,x<- y,x<->y);

−−− S e v e r a l examples o f l o g i c a l i n d e x o p e r a t o r s
set q := [1..16];
binary parameter

z{t,q} := [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0];

b1{q} := and{t} z " same as f o r a l l {} . . . ";
b2{q} := nand{t} z " same as ~and {} ";
b3{q} := or{t} z " same as e x i s t {} . . . ";
b4{q} := nor{t} z " same as ~ or {} ";
b5{q} := xor{t} z " same as e x a c t l y (1) {} ";
b6{q} := z[4,q] or xor{t} z;
b7{q} := atleast(1) {t} z " same as o r {} ";
b8{q} := atmost (2) {t} z;
b9{q} := exactly(3) {t} z;

Write('\n\n');
Write{q}(' %2s %d %d %d %d %d %d %d %d %d \n', q,b1,b2,b3,b4,b5,b6,

b7,b8,b9);
end� �

71

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn02a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn02a
https://matmod.ch/lpl/HTML/learn02a.html

31 The within and in Operators (learn03)
—- Run LPL Code , HTML Document –
Problem: The keywords within and in are similar used in different contexts. (within was introduced in
version LPL6.66 to differenciate two meanings.)

The first part of the model shows the within in an expression: i within j returns the position of
element i within set j, zero if not found (note that the first position is 1).

The second part shows it in a indexed part as {...}. For example, {i in s,... introduces a
local identifier i as a place-holder for s in the following part of the expression.

Listing 31: The Complete Model implemented in LPL [2]� �
model learn03 " The w i t h i n and i n O p e r a t o r s ";

−−−− f i r s t example wi th t h e w i t h i n −o p e r a t o r −−−−
set i := [1..12];
set j := [2..7];
parameter x{i}:=i;
r1{i | i within j} := x;
r2{i | ~(i within j)} := x;
r3{j} := x[j within i];
r4{i}:= x[i within j];

Writep(x,r1,r2,r3,r4);
−−−− second example wi th in −o p e r a t o r −−−−
set s := [s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11];

t := [s2 s3 s4 s5 s12];
parameter a{i in s,j in s | i<7 and (j=i+1 or j=i+2 or j=i+5)}:=1 "

Compares p o s i t i o n ";
b{s,t | t within s} :=1 " Compares t h e e l e m e n t names ";

Writep(a,b);
end� �

72

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn03
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn03
https://matmod.ch/lpl/HTML/learn03.html

32 Some String Compare Operations (learn04)
—- Run LPL Code , HTML Document –
Problem: String comparision : string can be used as litterals within ’ ’ or as identifiers declared as string
parameter. They can be used anywhere in an expression, where a number or another identifier is allowed.
In general they return a zero if evaluated in an expression except in the following cases:

1. used in a applied index-list in place of an element. In this case it is tested if this element exists. If
not, zero is returned. example: ... + x[’apple’,’period4’] + ...

2. together with one of the six relational operators. (<, <=, =, >, >=, <>) example : x < ’Period5’
(x must be of type STRING or set)

Listing 32: The Complete Model implemented in LPL [2]� �
model learn04 "Some S t r i n g Compare O p e r a t i o n s ";
set

i := [KA EI FE KH ET FS];
parameter

a{i} := [1 2 3 4 5 6];
b := a['EI'] " r e f e r e n c e e l e m e n t by name ";
b1 := a[2] " same b u t r e f e r e n c e by p o s i t i o n ";
c := a['KA'];
c1 := a[1];
d0 := '100' < '15' " t r u e ";
d1 := 100 < 15 " f a l s e ";
e{i} := i > 'FS' " s t r i n g compar i son ! ";
f{i} := i >= 'FS';
g{i} := i < 'FS';
h{i} := i <= 'FS';
j{i} := i <> 'FS';
k{i} := i = 'FS';

string parameter
s := ['Fette'];
t{i} := ['Kalorien' , 'Eiweiss' , 'Fett' , 'Kohlenhydrate' ,

'tierische Eiweisse' , 'Fett sichtbar'];
parameter

m{i} := t <= t[3];
m1{i}:= t < t['FS'];
n{i} := i < t;
o{i} := s < t;

Writep(m); −− check o t h e r s
end� �

73

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn04
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn04
https://matmod.ch/lpl/HTML/learn04.html

33 Index options, and wrap around function (learn05)
—- Run LPL Code , HTML Document –
Problem: Note p and t are two basic sets that have nothing in common, although one can test whether
an element from one is also in the other with the within operator. On the other hand, t1 is a subset
(a relation) of p. Normally, it does not make sense to mix two basic sets. See what happens here by
generating the EQU file (locally).

Listing 33: The Complete Model implemented in LPL [2]� �
model learn05 " Index o p t i o n s , and wrap around f u n c t i o n ";
set

p := [0..14] ;
t := [1..13] ;
t1{p} := p<>'0' and p<>'14';

variable X{p};
constraint

x0: sum{p} X; −−− o m i t s i n d e x l i s t
x1: sum{p} X[p]; −−− or : e x p l i c i t i n d e x l i s t
x3: sum{i in p} X[i]; −−− same as p r e v i o u s (u s i n g a l o c a l)
y0: sum{t} X[t within p]; −−− i n d e x r e p l a c e m e n t
y1: sum{t1} X[t1]; −−− same as p r e v i o u s
y2: sum{i in t} X[i]; −−− r a t h e r s t r a n g e , b u t i t works
w0: sum{i in p} X[i-1]; −−− no e r r o r f o r t h e f i r s t e l e m e n t !
w1: sum{t1} X[t1-1]; −−− t h a t ' s i n t e r e s t i n g , i s n ' t i t ?
w2: sum{i in t1[i]} X[i-1]; −−− t h a t ' s t h e same
v0: sum{i in p} X[i%#i+1]; −−− +1 wrap around
v1: sum{i in p} X[(i+#i-3)%#i+1]; −−− −2 wrap around

solve;
−−− a n o t h e r s m a l l example

set i := [1..5]; k{i} := [1 3 5];
parameter a{k} := [10 30 50];
parameter b{i} := k;
parameter c{i} := a;
Writep(i,k,a,b,c);

end� �

74

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn05
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn05
https://matmod.ch/lpl/HTML/learn05.html

34 Sort function (learn06)
—- Run LPL Code , HTML Document –
Problem: This example shows how to sort a vector 𝑎𝑖. The vector 𝑎 is not sorted itself. The sort generates
a permutation vector 𝑏 of the same length as 𝑎 and the sorted vector 𝑎 can then be generated by the syntax
𝑎[𝑏] (or more explicit 𝑎[𝑏[𝑖]].

Listing 34: The Complete Model implemented in LPL [2]� �
model learn06 " S o r t f u n c t i o n ";

set i:=1..10;
parameter a{i}:=Trunc(Rnd(1,100));
integer b{i};
Sort(a,b);
Writep(a,b);
Write{i}('%3d \t %5.2f \n',b,a[b]);
set j:=1..5;
parameter c{i,j}:=Trunc(Rnd(1,100));

d{i,j};
Sort(c,d);
Write('\n');
Write{i,j}('%3d \t %5.2f \n',d,c[d]);

end� �

75

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn06
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn06
https://matmod.ch/lpl/HTML/learn06.html

35 Date/Time Type (learn07)
—- Run LPL Code , HTML Document –
Problem: Date parameters are defined as given in the model (see datatime). Note that internally a
date is treated as a double and can be treated as such.

Output a date is done using the %t... formatting. One can also use the Format() function for
generating a string of the date.

Listing 35: The Complete Model implemented in LPL [2]� �
model learn07 " Date / Time Type ";

date parameter datetime:=@2018-12-11T13:10:15;
Write('A date and time: %tc , %tr\n', datetime,datetime);
string parameter dt:=Format('%tc %tT', datetime,datetime);
Write('dt=%s\n\n',dt);
date parameter birthday := @1961-04-14;
Write('Your birthday is : %tF\n', birthday);
Write('You already live %d days.\n\n', Now()-birthday);
set i:=1..30;
Write{i}('At: %tF is your %5d-th birthday\n',

birthday+1000*i,1000*i);
end� �

76

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn07
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn07
https://matmod.ch/lpl/HTML/learn07.html

36 Documenting Models (learn08)
—- Run LPL Code , HTML Document –
Problem: This is a model with inline documentation text. The model documentation can be generated
automatically using a compiler switch (T and t (see reference manual.

This is the documentation for the main model. The model is a simple linear program with 10 variables.
All data are declared and defined inline, that is, they are defined within the model code.

Modeling Steps

Note that the code contains comments for each entity. In lplw.exe, press key F5 to generate the documen-
tation. Make sure that the batch file modeldoc.bat contains the correct paths.

This is the LPL code:
Listing 36: The Complete Model implemented in LPL [2]� �

model learn08 " Documenting Models ";
/ ∗ ∗

∗ F i r s t a s e t @i@ i s d e f i n e d . I t has 10 e l e m e n t s .
∗ I t i s used t o d e f i n e t h e 10 v a r i a b l e s .
∗ /

set i := [1..10] "A s e t w i th 10 e l e m e n t s ";
/ ∗ ∗

∗ A v a r i a b l e v e c t o r @x@ d e f i n e d t h e model v a r i a b l e .
∗ i t i s i n d e x e d ove r @i@ (as $x_ i$) .
∗ /

variable x{i} " The number o f d i f f e r e n t t y p e o f r o b o t s ";
/ ∗ ∗

∗ The f o l l o w i n g p a r a m e t e r s d e f i n e model d a t a
∗ /

parameter HC{i} := [5 5 4 5 6 5 7 8 4 7] " Component t ime ";
HM{i} := [4 8 5 6 4 8 7 6 5 3] " Mounting t ime ";
HT{i} := [6 2 4 6 3 4 5 2 5 3] " T e s t i n g t ime ";
Ordered{i} := [20 15 7 6 5 8 9 8 7 5] " Q u a n t i t y o r d e r e d ";
Price{i} := [300 200 100 50 50 100 200 100 400 200];

/ ∗ ∗
∗ Next , f o u r model c o n s t r a i n t s a r e d e f i n e d , t h r e e o f them a r e
∗ c a p a c i t y r e s t r i c t i o n s , and t h e l a s t one i s a demand r e q u i r e m e n t .
∗ /

constraint
Component :sum{i} HC[i] * x[i] <= 3500 " Component b u i l d i n g ";
Mounting: sum{i} HM[i] * x[i] <= 4800 " Mounting r o b o t s ";
Testing: sum{i} HT[i] * x[i] <= 3000 " T e s t i n g r o b o t s ";
Order{i}: x[i] >= Ordered[i] " Ordered ";

/ ∗ ∗
∗ F i n a l l y , we d e f i n e t h e o b j e c t i v e f u n c t i o n , which i s t o
∗ maximize t h e r e v e n u e (o r t o t a l s e l l) .
∗ /

maximize revenue: sum{i} Price[i]*x[i] " Maximize t h e p r o f i t ";
/ ∗ ∗

∗ Data and t h e r e s u l t a r e f i n a l l y w r i t t e n t o a f i l e ,
∗ t h e so c a l l e d NOM− f i l e . I t has t h e same name as t h e
∗ model f i l e (h e r e @doc . lpl@) wi th e x t e n s i o n ' nom ' .
∗ Hence , t h e r e s u l t s a r e w r i t t e n t o t h e f i l e @doc .nom@.
∗ /

Writep(revenue,x,HC,HM,HT);
/ ∗ ∗ We a l s o can d e f i n e submodels w i t h i n main models . The n e x t

77

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn08
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn08
https://matmod.ch/lpl/HTML/learn08.html

∗ d e c l a r a t i o n i s such a submodel , c a l l e d @submodel@ . However
∗ I t i s n o t used . I t i s on ly f o r d o c u m e n t a t i o n p u r p o s e .
∗ /

model submodel " a submodel ";
/ ∗ ∗ one may d e c l a r e o t h e r e n t i t i e s h e r e . . . ∗ /
set i;

end
end� �
And this is what is generated :

The Model

function 𝑙𝑒𝑎𝑟𝑛08

First a set i is defined. It has 10 elements. It is used to define the 10
variables.

set 𝑖 “A set with 10 elements”
A variable vector x defined the model variable. it is indexed over i
(as 𝑥𝑖).

var 𝑥𝑖 “The number of different type of robots”
The following parameters define model data

param 𝐻𝐶𝑖 “Component time”
param 𝐻𝑀𝑖 “Mounting time”
param 𝐻𝑇𝑖 “Testing time”
param 𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑖 “Quantity ordered”
param 𝑃𝑟𝑖𝑐𝑒𝑖

Next, four model constraints are defined, three of them are capacity
restrictions, and the last one is a demand requirement.

s.t. 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∶
∑

𝑖𝐻𝐶𝑖 ⋅ 𝑥𝑖 ≤ 3500 “Component building”
s.t. 𝑀𝑜𝑢𝑛𝑡𝑖𝑛𝑔 ∶

∑

𝑖𝐻𝑀𝑖 ⋅ 𝑥𝑖 ≤ 4800 “Mounting robots”
s.t. 𝑇 𝑒𝑠𝑡𝑖𝑛𝑔 ∶

∑

𝑖𝐻𝑇𝑖 ⋅ 𝑥𝑖 ≤ 3000 “Testing robots”
s.t. 𝑂𝑟𝑑𝑒𝑟𝑖 ∶ 𝑥𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝑖 “Ordered”

Finally, we define the objective function, which is to maximize the
revenue (or total sell).

maximize 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 ∶=
∑

𝑖 𝑃𝑟𝑖𝑐𝑒𝑖 ⋅ 𝑥𝑖 “Maximize the profit”
Data and the result are finally written to a file, the so called NOM-
file. It has the same name as the model file (here doc.lpl) with
extension ’nom’. Hence, the results are written to the file doc.nom.

𝐖𝐫𝐢𝐭𝐞𝐩(𝑟𝑒𝑣𝑒𝑛𝑢𝑒, 𝑥,𝐻𝐶,𝐻𝑀,𝐻𝑇)
We also can define submodels within main models. The next declara-
tion is such a submodel, called submodel. However It is not used.
It is only for documentation purpose.

78

function 𝑠𝑢𝑏𝑚𝑜𝑑𝑒𝑙

one may declare other entities here...
set 𝑖

end

end

79

37 Call Submodel within Solver (Gurobi) (learn10)
—- Run LPL Code , HTML Document –
Problem: This model shows the effect of the CALLBACK option for the solver (Gurobi).

(Note that the correct Gurobi version must be installed!).
First it defines the solver interface string gurobiLSol (see manual Chap 9.2) This is necessary for

the very last parameter (5000), which is the SIP22 – meaning 20secs. The solver is called with the option
’CALLBACK=callit’which means that the solver must call the submodel callit on a regular base.
The first time the solver calls it is when it gets its first feassible solution. Then it calls it each time when
a new integer feasible solution is found but not before 20secs have elapsed.
This options allows the modeller to save intermediary solutions for a lengthy calculation of a very hard
IP problem. Try out different value for the SIP22. The default is 0secs, which means that the submodel
is called inside the solver each time when a new integer feasible solution has been discovered.
In our case, the callit just adds a line to the LOG-file when it was called.

Listing 37: The Complete Model implemented in LPL [2]� �
model learn10 " C a l l Submodel w i t h i n S o l v e r (Gurobi) ";

string parameter gurobiLSol1 := ',,lib:C:/gurobi900/win64/bin/
gurobi90,gurobi.prm,,TimeLimit=100;OutputFlag=0,,,,,,,,,,,,LP;MIP
;QP;iQP;QCP;iQCP,,,,5000';

SetSolver(gurobiLSol1,'CALLBACK=callit');
set i,j:=1..16;

s:=1..15;
parameter c{i,j,s}:=Trunc(Rnd(1,30));
binary variable x{i,j,s|i<>j};
constraint
A{i,j|i<j}: sum{s} (x[i,j,s]+x[j,i,s]) = 1;
B{i,s}: sum{j} (x[i,j,s]+x[j,i,s]) = 1;

minimize obj: sum{i,j,s} c*x;
model callit;
parameter n;;
n:=n+1;
Write('obj = %2d after %d secs\n', sum{i,j,s} c*x,GetParam(1)/1000

);
end

end� �

80

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn10
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn10
https://matmod.ch/lpl/HTML/learn10.html

38 Sparsity Check (learn11)
—- Run LPL Code , HTML Document –
Problem: Define a very sparse set 𝑆𝑖,𝑗,𝑘,𝑝 indexed over four indices of size 100. So full cadinality of 𝑆 is
108. However, the cardinality of sparse 𝑆 is only about 500000 elements.

Constraint A and B below are completely identical. Note that the indexes are not in the same order as
defined in s{i,j,k,p}. LPL needs 60secs to generate constraint A, but only 5secs for constraint B.

It is therefore important for large models how to exploit sparsity.
Listing 38: The Complete Model implemented in LPL [2]� �

model learn11 " S p a r s i t y Check ";
set
i:=1..100;
j:=1..100;
k:=1..100;
p:=1..100;
S{i,j,k,p}:=if(Rnd(0,1)<=0.005,1);

variable x{i,j,k,p};
constraint A{j,p}: sum{i,k|S} x = 2;
constraint B{j,p}: sum{(i,k) in S} x = 2;
solve;

end� �

81

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn11
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn11
https://matmod.ch/lpl/HTML/learn11.html

39 Reading Relations (learn12)
—- Run LPL Code , HTML Document –
Problem: How to read “relations” from text files.

Listing 39: The Complete Model implemented in LPL [2]� �
model learn12 " Reading R e l a t i o n s ";

−−d e f i n e t h r e e b a s i c s e t s
set i; j; k;
−−d e f i n e f o u r r e l a t i o n s
set ij{i,j}; ik{i,k}; jk{j,k}; ijk{i,j,k};
parameter a{i,j,k};
−− r e a d i n g them from f i l e
Read{i,j,k}('learn12.txt', i,j,k,ij,ik,jk,ijk,a);
Writep(i,j,k,ij,ik,jk,ijk,a);

end� �
Note: reading relations does not physical read in text files. So in fact the Read instruction only reads 𝑖, 𝑗,
and 𝑘, (and 𝑎). The 4 relations are derived. This is a powerful option to generate sparse relations.
The content of the text file ’learn12.lpl’ is as follows:

// a data set (i,j,k,a) for learn12.lpl
1 a A 12
1 b A 13
2 b B 15
3 a A 17
3 c C 19
4 a A 21
4 b A 11
4 b B 8
5 a B 7
5 b A -3
5 c C 33

82

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn12
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn12
https://matmod.ch/lpl/HTML/learn12.html

40 A Small Data Cube I (learn13)
—- Run LPL Code , HTML Document –
Problem: Open this model with lplw.exe an play around with the 4-dimensional pivot tables.

Listing 40: The Complete Model implemented in LPL [2]� �
model learn13 "A Smal l Data Cube I ";

set i := [1 2];
j := [a b c];
k := [w x y z];
h := [p q r s t];

parameter a{i,j,k,h} := if(Rnd(0,1)<0.3,Trunc(Rnd(1,9)));
/ ∗ [3 . 5 . . 9 ,

4 5 6 . . . ,
2 1 7 3 3 . ,
. 8 . . 4 5] ; ∗ /

b{i,j,k} := a[i,j,k,'p']; −− s e l e c t / p r o j e c t ;
c{i,k,h} := sum{j} a;
d{i,j} := sum{k}(max{h} a);
e{k,h} := a['1','a',k,h];
f := sum{i,j,k,h} a;
g{i,j,k,h | a>4} := a;
x{i,k,h} := sum{j | a<5} a;
set ijkh,I{i,j,k,h} := a;

ijKh{i,j,k,h} := if (i=1 and j=2 and h=2,1);
variable v{I[i,j,k,h]} := b[i,j,k]*c[i,k,h];
z{ijKh};

constraint C{i,j,k,h}: 2*v + z[i,j,k,h] =10;
minimize obj: sum{ijKh} z;
−−w r i t e a ;

end� �

83

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn13
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn13
https://matmod.ch/lpl/HTML/learn13.html

41 A Small Data Cube II (learn13a)
—- Run LPL Code , HTML Document –
Problem: Open this model with lplw.exe an play around with the 4-dimensional pivot table.

Listing 41: The Complete Model implemented in LPL [2]� �
model learn13a "A Smal l Data Cube I I ";

set product, p := [1..10];
location, i,j:= [A B C D E F G];

parameter transportationCost{p,i,j|i<>j}
:= if(Rnd(0,1)<0.15 , Rnd(0,60));

−−−−
set share, s := [s1 s2 s3 s4 s5];
period, t := [t1 t2 t3 t4 t5 t6];

parameter returnValue{s,t} := Rnd(0,1);
−−−−
set machine, m := [m1 m2 m3 m4];
mode, o := [o1 o2 o3];

parameter hours{m,p,o,t}
:= Trunc(if(Rnd(0,1)<0.35 , Rnd(0,10)));

Writep(hours,o);
end� �

84

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn13a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn13a
https://matmod.ch/lpl/HTML/learn13a.html

42 Multiple bounds of variables (learn14)
—- Run LPL Code , HTML Document –
Problem: Bounds can be assigned by the bound attribute [a..b] at the declaration of an entity. Bounds
on varibales can also be assigned by constraints. Generate the EQU-file to see the result.

Listing 42: The Complete Model implemented in LPL [2]� �
model learn14 " M u l t i p l e bounds o f v a r i a b l e s ";

set i := [1..10];
parameter a{i} := i;

b{i} := 10+i;
variable
x [1..99] " x has lower / uppe r bound of 1 and 99 ";
y{i} [a..b] " The lower / uppe r bound of y i s g i v e n by t h e v e c t o r s

a and b ";
z{i} [i..10+i] "Any e x p r e s s i o n can be used as a bound ";

constraint
r1: x <= 100 " Th i s c o n s t r a i n t w i l l have no e f f e c t , uppe r bound i s

s t i l l 99 ";
r2: x >= 2 " Th i s o v e r r i d e s t h e lower bound of 1 ";
r3{i}: y <= 15 "Some upper bounds o f y a r e r e a s s i g n e d ";
r4{i}: z >= 4 "Some lower bounds o f z a r e r e a s s i g n e d ";

maximize obj1: x + sum{i}(y+z) " The s o l u t i o n i s a t t h e uppe r bounds ";
Writep(x,y,z);
minimize obj2: x + sum{i}(y+z) " The s o l u t i o n i s a t t h e lower bounds ";
Writep(x,y,z);

end� �

85

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn14
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn14
https://matmod.ch/lpl/HTML/learn14.html

43 Submodels and Encapsulation (learn15)
—- Run LPL Code , HTML Document –
Problem: This model declares four (sub)models (m1-m4). The executable part of the main model runs
the four models one after the other. Note that the same idetifier can be redeclared in different models.

Listing 43: The Complete Model implemented in LPL [2]� �
model learn15 " Submodels and E n c a p s u l a t i o n ";

m1; m2; m3; m4; −−e x e c u t e t h e f o u r models d e f i n e d below
Write('----writes from the main model\n');
Writep(m1.a,m4.a);
model m1 " f i r s t model ";
set

i := [i1 i2 i3 i4 i5];
j := [j1 j2 j3 j4 j5];
m{i,j} := [i1 j1 , i1 j4 , i1 j5 , i2 j2 , i3 j2 , i4 j5];

parameter
d{i,j} := 1;
a{m} := m; −− same as : a { i , j | m[i , j] } := m;
b{m[i,j] | i<j} := i*j; −− same as : b{ i , j | m[i , j] and i <j } :=

i ∗ j ;
c{m,i | i<4} := i; −− same as : c {k i n i , j , i | m[k , j] and i

<4} := i ;
Write('writes from the model m1\n');
Writep(i,j,m,d,a,b,c);

end
model m2 " second model ";
set

i := [A1 A2 A3 A4];
j := [B1 B2 B3];
k{i} := [A2 A4];
m{i,j} :=[A2 B2 , A2 B3 , A4 B2];

parameter
a{m} := [1 2 3];
b{m,k} := / A2 B3 A4 2 , A4 B2 A2 3 , A2 B2 A2 5 /;
c{m} := / A2 B3 1 , A1 B3 4 /;

/ ∗ n o t e t h a t t h e t u p l e (A1 B3) i s n o t i n (m) , t h e r e f o r e i t
w i l l
n e v e r show up ∗ /

d{m} := 4;
Write('writes from the model m2\n');
Writep(i,j,k,m,a,b,c,d);

end
model m3 " t h i r d model ";
set

i := [i1 i2 i3 i4 i5];
j := [j1 j2 j3];
k := [k1 k2 k3 k4];
m{i} := [i1 i2 i4];
p{j} := [j2 j3];
n{i,j} := [i1 j2 , i2 j2 , i4 j3];
o{i,j,j} := [i1 j2 j2 , i2 j2 j3 , i4 j3 j3];

parameter
a{k,o,n} := k*o*n ;
b{o,o,i} := o*i ;

Write('writes from the model m3\n');
Writep(i,j,k,m,p,n,o,a,b);

86

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn15
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn15
https://matmod.ch/lpl/HTML/learn15.html

end
model m4 " f o u r t h model ";
set

i := [A1 A2 A3 A4 A5 A6 A7 A8 A9]; −− a b a s i c s e t
j{i} := [A2 A3 A4 A5 A6 A7 A8 A9]; −− a d e r i v e d s u b s e t o f s e t

i
k{i} := [A3 A4 A5 A6 A7 A8]; −− a d e r i v e d s u b s e t o f s e t

i
p{i} := [A4 A5 A6]; −− a d e r i v e d s u b s e t o f s e t

i
m := [A3 A4 A5 A6 A7 A8]; −− m i s an i n d e p e n d e n t

b a s i c s e t
−− n o t e : m has n o t h i n g i n common wi th any of t h e above s e t s

!
parameter

simple_i{i} := i; −− t h e r e i s n o t h i n g s p e c i a l a b o u t t h e s e
e x p r e s s i o n s

simple_j{j} := j;
simple_k{k} := k;
simple_p{p} := p;

/ ∗ t h e c o m p l i c a t i o n e n t e r s only , i f t h e s e t s a r e mixed .
C o n s i d e r t h e f o l l o w i n g e x p r e s s i o n s ∗ /

a{i} := 1000*i;
b{i} := 1000*i + 100*j;
c{i} := 1000*i + 100*j + 10*k;
d{i} := 1000*i + 100*j + 10*k + p;

/ ∗ you s h o u l d r e a d them as
a { i } := 1000∗ i ;
b{ i } := 1000∗ i + 100∗ j [i] ; −− i f i =1 t h e n j [i] i s z e r o .
c { i } := 1000∗ i + 100∗ j [i] + 10∗k [i] ;
d{ i } := 1000∗ i + 100∗ j [i] + 10∗k [i] + p [i] ;

which i s a l s o l e g a l s y n t a x i n LPL . ∗ /
e{i} := i within m; −− t h e i n o p e r a t o r
f{m} := m within i;

/ ∗ Note : " e { i } := m" (o r f {m}= i) would p roduce an e r r o r , s i n c e m
c a n n o t

by bound t o i b e c a u s e t h e y a r e two i n d e p e n d e n t b a s i c s e t s .
But "m i n i " r e t u r n s t h e p o s i t i o n o f m w i t h i n i ; i t i s 0 , i f a
c o r r e s p o n d i n g m i s n o t i n i . ∗ /

Write('writes from the model m4\n');
Writep(i,j,k,p,m);
Writep(simple_i,simple_j,simple_k,simple_p,a,b,c,d,e,f);

end
end� �

87

44 Again, some non-trivial relations (learn16)
—- Run LPL Code , HTML Document –
Problem: A example with relations

Listing 44: The Complete Model implemented in LPL [2]� �
model learn16 " Again , some non− t r i v i a l r e l a t i o n s ";

−−− a f i r s t example : compare ' ge0 ' and ' ge1 ' −−−−
set
i := [1..10];
j := [1..10];
k := [1..2];
s{i,j} := [5 5, 5 7, 5 9] " a 2−dimen . s p a r s e r e l a t i o n ";

string parameter
typ{k,s} := ['<' '=>' '<' '=' '<' '>'] " a 3−dimen t a b l e , n o t e :

c a r d i n a l i t y i s 6 ";
parameter
ge0{k,i,j | typ[k,s[i,j]]='<'} := 100*k+10*i+j;
ge1{k,s[i,j] | typ[k,s]='<'} := 100*k+10*i+j;

/ ∗ both , ge0 and ge1 , r e t u r n t h e same v a l u e s . But t h e r e i s a s u b t i l e
d i f f e r e n c e : ge0 has a c a r d i n a l i t y o f 200 , ge1 has a c a r d i n a l i t y
o f on ly 6 . T h e r e f o r e , ge1 i s more compact and much q u i c k e r t o work

t h r o u g h .
Note a l s o , t h a t i and j i n ge1 a r e l o c a l s , t h e g l o b a l s i and j
a r e n o t ' v i s i b l e ' . I n ge0 , however , i and j a r e g l o b a l s . ∗ /

−−−− a n o t h e r example −−−−
set
ii,p,q := [I1 I2 I3 I4 I5 I6 I7 I8 I9 I10];
jj := [J1 J2 J3 J4 J5 J6];
kk{ii} := [I5 I6 I7];
mm{jj} := [J2 J4 J6];

parameter
a1{p,q|kk[p] and mm[q]} := 1;
a2{kk,mm} := 1;

Write('(This model outputs nothing, run it locally\n');
end� �

88

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn16
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn16
https://matmod.ch/lpl/HTML/learn16.html

45 Expressions and Constraints (learn17)
—- Run LPL Code , HTML Document –
Problem: Active constraints are model constraints that are passed to the solver; inactive entities are not
passed to the solver. A way to select active constraints is through subject to: A list of active constraints
is given by (id,id,...) A list of inactive constraints is given by (id, id, id,...).

Part of a constraint can be declared in ’expression’.
Listing 45: The Complete Model implemented in LPL [2]� �

model learn17 " E x p r e s s i o n s and C o n s t r a i n t s ";
variable X; Y; Z;
expression
B:= 10;
C:= 11;
A:= B+C;
D:= X+Y;

constraint
E : D - Z = 3;
F : D + D + Z = A;
G : 3*D + 2*Z >= A+10;

minimize obj1: X-Y subject_to E,F;
Write('OBJ1=%3d , X=%4.1f , Y=%4.1f , Z=%4.1f\n', X-Y,X,Y,Z);
minimize obj2: X-Y subject_to learn17,~G; −−same as b e f o r e
Write('OBJ2=%3d , X=%4.1f , Y=%4.1f , Z=%4.1f\n', X-Y,X,Y,Z);
minimize obj3: X-2*Y subject_to G,F;
Write('OBJ3=%3d , X=%4.1f , Y=%4.1f , Z=%4.1f\n', X-2*Y,X,Y,Z);

end� �

89

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn17
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn17
https://matmod.ch/lpl/HTML/learn17.html

46 GetValue Function (learn20)
—- Run LPL Code , HTML Document –
Problem: The functionGetValue() returns various values of a entity. Ifx is a variable thenGetValue(x,3)
returns the dual value of x (if available).

Listing 46: The Complete Model implemented in LPL [2]� �
model learn20 " GetValue F u n c t i o n ";

set i := [1..10]; j := [1..9];
parameter A{i,j} := if(Rnd(0,1)<0.25, Rnd(0,5));

c{j} := Trunc(Rnd(10,100));
b{i} := Trunc(if(Rnd(0,1)<0.75, Rnd(0,20)));

variable x{j} [1..50];
constraint R{i} : sum{j} A*x >= b;
minimize obj : sum{j} c*x;
Write('j = %6s\n',{j} j);
Write('Value of x = %6.1f\n',{j} x);
Write('GetValue(x,0) = %6.1f\n',{j} GetValue(x,0));
Write('GetValue(x,1) = %6.1f\n',{j} GetValue(x,1));
Write('GetValue(x,2) = %6.1f\n',{j} GetValue(x,2));
Write('GetValue(x,3) = %6.1f\n',{j} GetValue(x,3));
Write('GetValue(R,3) = %6.1f\n',{i} GetValue(R,3));
Write('GetValue(R,4) = %6.1f\n',{i} GetValue(R,4));
Write('GetValue(R,5) = %6.1f\n',{i} GetValue(R,5));
Write('GetValue(R,6) = %6.1f\n',{i} GetValue(R,6));
Write('GetValue(R,7) = %6.1f\n',{i} GetValue(R,7));
Write('GetValue(R,8) = %6.1f\n',{i} GetValue(R,8));

end� �

90

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn20
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn20
https://matmod.ch/lpl/HTML/learn20.html

47 create a SQL script, test sparcity (locally only) (learn21)
—- Run LPL Code , HTML Document –
Problem: Run this model locally with the interpreter option ’q’. This will generate two files: ’learn21.sql’
and ’learn21.sq2’. The first is a complete executable SQL script that can be used to create a database. The
second file is the corresponding read/write listing in LPL syntax able to read write to/from that database.

Listing 47: The Complete Model implemented in LPL [2]� �
model learn21 " c r e a t e a SQL s c r i p t , t e s t s p a r c i t y (l o c a l l y on ly) ";

−− c r e a t e t h e SQL− s c r i p t and compare i t t o t h e LPL model
set i; j;

ij{i,j} := [i1 j1, i2 j2, i3 j3, i3 j4];
parameter
aij{i,j} := / i1 j2 1 , i2 j3 2 , i3 j4 3 , i3 j1 4, i2 j1 5/;
bij{i,j} := / i1 j1 10, i2 j3 20, i2 j4 30, i3 j2 40/;

end� �

91

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn21
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn21
https://matmod.ch/lpl/HTML/learn21.html

48 GetAttr Function (two parameters) (learn22)
—- Run LPL Code , HTML Document –
Problem: Implements reflection! The function GetAttr() returns a statement attribute (see chap 4.1
in the reference manual. For example, if X is an integer variable then GetAttr(X,2) returns the string
’integer’.

Listing 48: The Complete Model implemented in LPL [2]� �
model learn22 " G e t A t t r F u n c t i o n (two p a r a m e t e r s) ";

/ / G e t A t t r w i th TWO p a r a m e t e r s
set i := [i1 i2 i3 i4 i5 i6 i7 i8 i9 i10];
parameter a{i}:=i*10;
integer variable

X,a1,a2{i|a>=50}
default 20
priority i+2
[i..i^2]
" comment "
'a quote'
frozen
:= 100+i^4;

Write('GetAttr(a,3) = %s\n\n',GetAttr(a,3));
Write('GetAttr(X,2) = %s\n\

GetAttr(X,3) = %s\n\
GetAttr(X,4) = %s\n\
GetAttr(X,5) = %s\n\
GetAttr(X,7) = %s\n\
GetAttr(X,8) = %s\n\
GetAttr(X,9) = %s\n\
GetAttr(X,10) = %s\n\
GetAttr(X,12) = %s\n\
GetAttr(X,13) = %s\n\
GetAttr(X,14) = %s\n\
GetAttr(X,15) = %s\n\
GetAttr(X,16) = %s\n\
GetAttr(X,18) = %s\n\
GetAttr(X,19) = %s\n\
GetAttr(X,20) = %s\n\
GetAttr(X,22) = %s\n\
GetAttr(X,23) =\n%s\n\
GetAttr(X,24) =\n%s\n\
GetAttr(X,25) =\n%s\n\
GetAttr(X,26) =\n%s\n',

GetAttr(X,2),GetAttr(X,3),GetAttr(X,4),GetAttr(X,5),GetAttr(X,7),
GetAttr(X,8),GetAttr(X,9),GetAttr(X,10),GetAttr(X,12),
GetAttr(X,13),GetAttr(X,14),GetAttr(X,15),GetAttr(X,16),
GetAttr(X,18),GetAttr(X,19),GetAttr(X,20),GetAttr(X,22),
GetAttr(X,23),GetAttr(X,24),GetAttr(X,25),GetAttr(X,26));

end� �

92

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn22
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn22
https://matmod.ch/lpl/HTML/learn22.html

49 GetAttr Function (one parameter) (learn22a)
—- Run LPL Code , HTML Document –
Problem: The GetAttr() function can also be called with a single parameter. In this case it returns
the statement attribute of the focused entity. (see learn2218.

Listing 49: The Complete Model implemented in LPL [2]� �
model learn22a " G e t A t t r F u n c t i o n (one p a r a m e t e r) ";

/ / G e t A t t r w i th ONE p a r a m e t e r s
set i := [i1 i2 i3 i4 i5 i6 i7 i8 i9 i10];
parameter a{i}:=i*10;
integer variable

X,a1,a2{i|a>=50}
default 20
priority i+2
[i..i^2]
" comment "
'a quote'
frozen
:= 100+i^4;

SetFocus(a);
Write('GetAttr(3) (focus is a) = %s\n\n',GetAttr(3));
SetFocus(X);
Write('GetAttr(2) = %s\n\

GetAttr(3) = %s\n',
GetAttr(2),GetAttr(3));

end� �

18https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn22

93

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn22a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn22a
https://matmod.ch/lpl/HTML/learn22a.html
https://matmod.ch/lpl/HTML/learn22.html

50 GetName Function (learn23)
—- Run LPL Code , HTML Document –
Problem: The GetName function returns the name of an instanced entity in various formats. Example:
if X is defined as in the model below then GetName(X[1,2],0) returns ’X[i1,B]’ and so on. Run
the model and check.

Listing 50: The Complete Model implemented in LPL [2]� �
model learn23 " GetName F u n c t i o n ";

set i := [i1 i2];
j := [A, B, C];

string parameter I{i}:=['firstI', 'secondI'];
J{j}:=['1stJ', '2ndJ', '3rdJ'];

parameter II{i} := [100 200];
StringToSet(i,I); −− l i n k i t o I
−−S t r i n g T o S e t (i , I I) ; −− l i n k i t o I I / / t r y t h i s
StringToSet(j,J); −− l i n k j t o I
variable X{i,j}:=1;
Write{i,j}('GetName(X,0) = %s\n',GetName(X,0));
Write{i,j}('GetName(X,1) = %s\n',GetName(X,1));
Write{i,j}('GetName(X,2) = %s\n',GetName(X,2));
Write{i,j}('GetName(X,3) = %s\n',GetName(X,3));
Write{i,j}('GetName(X,4) = %s\n',GetName(X,4));
Write{i,j}('GetName(X,5) = %s\n',GetName(X,5));
Write{i}('GetName(II,4) = %s\n',GetName(II,4));
Write{i}('GetName(II,5) = %s\n',GetName(II,5));
Write{i}('GetName(II,6) = %s\n',GetName(II,6));

end� �

94

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn23
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn23
https://matmod.ch/lpl/HTML/learn23.html

51 GetParams Function (learn24)
—- Run LPL Code , HTML Document –
Problem: The functionGetParams() returns a ”global” parameter of the model. For example, GetParams(8)
returns the actual LPL version you are running, etc.

Listing 51: The Complete Model implemented in LPL [2]� �
model learn24 " GetParams F u n c t i o n ";

Write('GetParams(0) = %s\n',GetParamS(0));
Write('GetParams(1) = %s\n',GetParamS(1));
Write('GetParams(2) = %s\n',GetParamS(2));
Write('GetParams(3) = %s\n',GetParamS(3));
Write('GetParams(4) = %s\n',GetParamS(4));
Write('GetParams(5) = %s\n',GetParamS(5));
Write('GetParams(6) = %s\n',GetParamS(6));
Write('GetParams(7) = %s\n',GetParamS(7));
Write('GetParams(8) = %s\n',GetParamS(8));
Write('GetParams(9) = %s\n',GetParamS(9));
Write('GetParams(10) = %s\n',GetParamS(10));
Write('GetParams(11) = %s\n',GetParamS(11));
Write('GetParams(12) = %s\n',GetParamS(12));
Write('GetParams(13) = %s\n',GetParamS(13));
Write('GetParams(15) = %s\n',GetParamS(15));
Write('GetParams(16) = %s\n',GetParamS(16));
Write('GetParams(17) = %s\n',GetParamS(17));

end� �

95

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn24
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn24
https://matmod.ch/lpl/HTML/learn24.html

52 Split Function (learn25)
—- Run LPL Code , HTML Document –
Problem: The function Split splits (or tokenizes) a string into several parts separates by a character
(the splitting character). For example, if the string is ’aa,bb,ccc,d’ and the splitting parameter is ,
(a comma), then the function can tokenize it into ’aa’, ’bb’, ’ccc’, and ’d’. The result must be a
parameter. Example:

string a; b; c; d;
Split('aa,bb,ccc,d',',',a,b,c,d);

The string parameters a, b, c, and d receive the parts as string. If the parts are numbers (or dates) then a
type cast is automatically done. Example:

integer a; b; c; d;
Split('12,1234,1,45',',',a,b,c,d);

The parameters a,b,c,and d will have the numerical values 12, 1234, 1, and 45.
Another form of the Slip function to tokenize a (list of) strings into a single string table. Example:

string parameter S{i} := ['a,b,c,d,e,f' '1,2,3' 'AA,BB,CC,DD'];
set k := [1..7];
string parameter A{i,k};
{i}Split(S,',',{k} A);

In this case the string parameter A{i,k} will receive all string parts spitted. Run the model to see the
effects. Such a split may be especially interesting in a Read statement.

Listing 52: The Complete Model implemented in LPL [2]� �
model learn25 " S p l i t F u n c t i o n ";

set i:=[1..3];
string parameter s{i} := ['a,b,c,d' '1,2,3,4' 'AA,BB,CC,DD'];
string parameter a{i}; b{i}; c{i}; d{i};
{i}Split(s,',',a,b,c,d);
Writep(a,b,c,d);
string parameter S{i} := ['a,b,c,d,e,f' '1,2,3' 'AA,BB,CC,DD'];
set k := [1..7];
string parameter A{i,k};
{i}Split(S,',',{k} A);

end� �

96

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn25
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn25
https://matmod.ch/lpl/HTML/learn25.html

53 String Functions (learn26)
—- Run LPL Code , HTML Document –
Problem: Note there is no type cast function that transforms a number into a string. To transform a
number into a string use the concatenation operator & with an empty string, such as ’’&12.3 which
returns a string ’12.3’.

Listing 53: The Complete Model implemented in LPL [2]� �
model learn26 " S t r i n g F u n c t i o n s ";

parameter d := Strdate('2018-12-20');
parameter d1:= Strdate('1899-12-31');
parameter r := Strfloat('56.17');
parameter t := Strfloat('1,2.3,4.5,5',',',3);
parameter a := Strlen('abcd');
parameter b := Strpos('bc','abcdef');
string parameter c := Strreplace('abcedf','bc','-ccbbcbc-');
string parameter s := Strsub('abcdefg',2,3);
Writep(d1,r,t,a,b,c,s);
Write('%s\n','Length of\'abcd\' is ' & a);
Write('%tc\n', d);

end� �
To transform a string into a number type, use the function Strfloat. This function can also extract
the n-th occurence of a substring. For example the parameter t in the model was extracted from the 3-th
substring, separarted by the comma charcater (,).

97

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn26
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn26
https://matmod.ch/lpl/HTML/learn26.html

54 String Operations and Format (learn26a)
—- Run LPL Code , HTML Document –
Problem: Show some string operations and the Format function

Listing 54: The Complete Model implemented in LPL [2]� �
model learn26a " S t r i n g O p e r a t i o n s and Format ";

set i:=[1..5]; q:=[1..4];
set IQ{i,q}:= if(Rnd(0,1)<=.5,1,0);
string parameter x{i,q} := Format('i%1sq%1s', i, q);
string parameter concatB{q}:='';
for{i} do concatB{q|IQ}:=concatB & x[i,q] & ';'; end
string parameter concatB1{q}:=Format('%4s%1s', {i|IQ} x,';');
Writep(concatB,concatB1);
Write('\n');
string parameter a{i} := ['abcdef', '12345c789', 'qwcffc', 'ggggggh'

, 'cuitrtzuiop'];
integer parameter lenA{i} := Strlen(a);
integer parameter posC{i} := Strpos('c',a);
string parameter subA{i} := Strsub(a,3,20);
string parameter formA := Format('Total: %8.2f %6s %7d Date: %tc',

234.567, 'Uiii', 456, Now());
string parameter formB := Format{i}('I:%2s \t i^4=%3d \n', i,i^4);
Writep(lenA,posC,subA);
Write('\n/%s/\n\n', formA);
Write(formB);
Write('---The same again---\n');
Write{i}('I:%2s \t i^4=%3d \n',i,i^4);

end� �

98

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn26a
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn26a
https://matmod.ch/lpl/HTML/learn26a.html

55 Functions NextFocus, NextPosition (learn27)
—- Run LPL Code , HTML Document –
Problem: This model show the use of the functions NextFocus and NextPosition. The first part
of the model is a small production/distribution model containing three set and two variable declaration.

The goal is to output all sets and the corresponding elements. This is done in the second part: First
the focus is set to the beginning of the model by calling SetFocus(). Then a loop is repeated as long
as NextFocus(0) returns true (not zero). The function jumps to the next basic set (0 is the parameter
value for genus 0 – which is the basic set. If there is no more basic set then the function NextFocus(0)
returns false (0) and the loop ends. The inner loop jumps from one data entry to the next in lexicographical
ordering. In this case, it traverses all elements of the focused set. The function NextPosition returns
true as long as a next entry exists, otherwise it returns false (0). Note that we use GetValueS() to return
the element namem, because it is a string.

The third part outputs all variables with their value and dual value. The mechanism is the same as
in the second part. In this case, however the function NextFocus(3) jumps from a variable entity
to the next (3 is the parameter for genus 3 – that is, the variable. Note that in this case we must use
GetValue() to retrieve the values because they are numerical.

Listing 55: The Complete Model implemented in LPL [2]� �
model learn27 " F u n c t i o n s NextFocus , N e x t P o s i t i o n ";

set s := [SS HD];
d := [BA PH WA RI];
p := [P1 P2 P3];

parameter trcost{s,d} := [
3.52 9.47 0.38 8.63, 2.04 6.61 7.22 9.97];

prcost{s,p} := [4.22 5.05 4.60 , 1.45 2.45 2.03];
prCap{s} := [5000 6000];
orders{d} := [120 100 30 234];

variable PR{p,s}; SH{p,s,d};
constraint
Capacity{s} : sum{p} PR <= prCap;
Balance{p,s}: PR = sum{d} SH;
Demand{p,d} : sum{s} SH >= orders;

minimize costs: sum{p,s} (prcost*PR + sum{d} trcost*SH);
Write('LIST OF ALL BASIC SETS\n');
SetFocus();
while NextFocus(0) do
Write('%s %s (alias: %s)\n' , GetAttr(3),GetAttr(4),GetAttr(12));
while NextPosition do Write(' %s\n', GetValueS(0)); end

end
Write('\nLIST OF ALL VARIABLES\n');
SetFocus(0);
while NextFocus(3) do
Write('%s %s\n' , GetAttr(3) , GetAttr(4));
while NextPosition do Write('%s = %5.2f (dual=%4.2f)\n',

GetName(0),GetValue(0),GetValue(3));
end

end
end� �

99

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn27
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn27
https://matmod.ch/lpl/HTML/learn27.html

56 Multiple Snapshots (learn29)
—- Run LPL Code , HTML Document –
Problem: This model shows the use of multiple snapshots. A snapshot file is a compact file that stores
all the data (variable values included) from a model into a file. It is therefore – at the moment of writing
– a “snapshot” of the actual state. The instruction:

write to '<filename>.sps';

generates automaticcally such a file. All you need is, thta the file extension must be: sps.
Listing 56: The Complete Model implemented in LPL [2]� �

model learn29 " M u l t i p l e S n a p s h o t s ";
set i; j; parameter a{i,j};;
test1;
test2;
test3;
test4;
model test1;
i:=[A B D]; j:=[a b c d];
a{i,j}:= [1 2 3 4 5 6 7 8 9 10 11 12];
Write('1.sps');

end
model test2;
i:=[A C B]; j:=[a b c d];
a{i,j}:= [1 2 3 4 5 6 7 8 9 10 11 12];
a{i,j}:=10*a;
Write('2.sps');

end
model test3;
i:=[D G A]; j:=[b c d a];
a{i,j}:= [1 2 3 4 5 6 7 8 9 10 11 12];
a{i,j}:=100*a;
Write('3.sps');

end
model test4;
Read('1.sps');
Read('+:2.sps');
Read('+:3.sps');
Writep(a);

end
end� �

100

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn29
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn29
https://matmod.ch/lpl/HTML/learn29.html

57 Show Graph.Component (learn30)
—- Run LPL Code , HTML Document –
Problem: This model shows the use of the function Graph.Component. The model is an assignment
problem, augmented with subtour elimination constraints of lengtn 2. Run the model and open the SVG
graph learn30.svg.

The model also shows how to separate the main model from the data and from the output code. The
model data and output are called automatically at an appropriate time of execution (data is called
just before the minimization, and output is called at the very end). The user can change this by calling
them explicitly at the intended place.

Note also that output is a friend of model data which means that the entities defined inside
data are also available within the model output without explicitly noting the dot-notation (data.X
for example).

Listing 57: The Main Model implemented in LPL [2]� �
model learn30 "Show Graph . Component ";

parameter n:=[30] " Graph S i z e ";
set i,j,k "A s e t o f v e r t i c e s ";
parameter c{i,j} " D i s t a n c e between two l o c a t i o n s i and j ";
parameter cNr1 " number o f components ";

passed " loop v a r i a b l e ";
C{i} " t h e components ";

binary variable x{i,j|i<>j} " I s 1 i f (i , j) i s i n t h e t o u r ";
constraint
A{i}: sum{j} x = 1;
B{j}: sum{i} x = 1;
S2{i,j|j>i}: x[i,j] + x[j,i] <= 1; / / no s u b t o u r s o f l e n g t h 2

minimize obj: sum{i,j} c*x;
cNr1:=Graph.Components(x,C);
Write('There are %d components\n',cNr1);
while passed<cNr1 do
passed:=passed+1;
Write('\nComponent %d: ',passed);
Write{i|C=passed}('%2s ',i);

end
end� �

Listing 58: The Data Model
model data;
parameter X{i}; Y{i}; m:=Trunc(Sqrt(n));;
i:=1..n;
X{i}:=(i%m+1)*2+Trunc(Rnd(0,2));
Y{i}:=(i/m+1)*2+Trunc(Rnd(0,2));
c{i,j}:= Sqrt((X[j]-X[i])^2+(Y[j]-Y[i])^2);

end

Listing 59: The Output Model
model output friend data;
Draw.Scale(30,30);
Draw.DefFont('Verdana',8);
for{i,j|x} do Draw.Line(X[i],Y[i],X[j],Y[j],3); end;
for{i} do Draw.Circle(i&'',X,Y,.3,1,0) ; end;
Draw.Text('Length='&Round(obj,-4),0,0,16);

end

101

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn30
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn30
https://matmod.ch/lpl/HTML/learn30.html

58 Show Graph.Mincut function (learn31)
—- Run LPL Code , HTML Document –
Problem: The function Graph.Mincut() implements the Stoer-Wagner min cut algorithm. Unfortu-
nately, this function has not yet been well tested, so no guarantee is given... (to be checked)

Listing 60: The Complete Model implemented in LPL [2]� �
model learn31 "Show Graph . Mincut f u n c t i o n ";

set i,j; −−nodes
e{i,j}; −−edges
y{i,j}; YY{i};

parameter X{i}; Y{i};
parameter u{i,j}; C;
;
readgraph;
C:=Graph.Mincut(u,y,YY,0);
Write('Min Cut value is: %d\n', C);
Write{i,j|y}(' (%1s,%1s)\n', i,j);
Write{i|YY}(' %s ', i);
drawgraph;
model readgraph;
i:=[1..8];
u{i,j}:=/1 2 2, 1 5 3, 2 3 3, 2 5 2, 2 6 2, 3 4 4, 3 7 2,

4 7 2, 4 8 2, 5 6 3, 6 7 1, 7 8 3/;
u{i,j}:=if(u,u,u[j,i]);
e{i,j}:=if(i<j,u);
X{i}:=[0 1 2 3 0 1 2 3];
Y{i}:=[0 0 0 0 1 1 1 1];

end
model drawgraph;
e[2,1]:=0; / / do nor draw
Draw.Scale(100,100);
Draw.DefFont('Verdana',8);
for{e[i,j]} do Draw.Arrow('('&y&','&u&')',

X[i],Y[i],X[j],Y[j],.2,if(y=u,3,y>0,4,0)); end
for{i} do Draw.Circle(i&'',X,Y,.2,1,0); end

end
end� �

102

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn31
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn31
https://matmod.ch/lpl/HTML/learn31.html

59 Show Graph.MStree (Minimal Spanning Tree) (learn32)
—- Run LPL Code , HTML Document –
Problem: The function Graph.MStree() implements the Prim algorithm for the minimal spanning
tree problem in a graph. (Note that the graph data are read for THIS file(!) directly.)

Listing 61: The Complete Model implemented in LPL [2]� �
model learn32 "Show Graph . MStree (Minimal Spanning Tree) ";

set i,j,k; e{i,j}; x{i,j};
parameter X{i}; Y{i};
parameter c{i,j|e}; len;
;
readgraph;
c{i,j}:=Sqrt((X[j]-X[i])^2+(Y[j]-Y[i])^2);
len:=Graph.Mstree(c,x);
drawgraph;
model readgraph;
string parameter FILE:=['learn32.lpl'];
Read{i}(FILE&',%1:Coordinates', i,X,Y);
Read{i,j}('%1:Edges', i,j,e,c);
e{i,j}:=if(e,e,e[j,i]);

end
model drawgraph;
e[2,1]:=0;
Draw.Scale(60,60);
Draw.DefFont('Verdana',8);
for{e[i,j]|x} do Draw.Line(Round(c,-2)&'',X[i],Y[i],X[j],Y[j],3);

end
for{i} do Draw.Circle(i&'',X,Y,.2,1,0); end

end
end� �

103

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn32
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn32
https://matmod.ch/lpl/HTML/learn32.html

60 Read Multiple Snapshots (learn33)
—- Run LPL Code , HTML Document –
Problem: This model is a small example that shows the power of shapshot files. A snapshot file is a file
that records ALL model data at the call of a Write snapshot instruction. Later on, this snapshot can be
read in. The filename has extension sps. The following function call simply writes a snapshot file named
snap.sps.

Write('snap.sps');

The instruction writes a snapshot of the complete internal data store of the LPL model at the moment
of its call to a file – the snapshot file, that is, all data at a particular moment of the execution are collected
and written to the file. This “data state” can be restored at any time by a snapshot Read instruction.

Read('snap.sps');

Note that data tables with the frozen attribute set are not modified.
Listing 62: The Complete Model implemented in LPL [2]� �

model learn33 " Read M u l t i p l e S n a p s h o t s ";
set i,j frozen :=[A B C D E]; −−u n c h a n g a b l e s e t
set k :=[1..4];
parameter a; b{i}; c{k,i};
for{i} do
a:=10*i; −−a s s i g n a v a l u e t o a
b{j}:=i*j; −− f i l l t a b l e b
c{k,j}:=j*10*k+i; −− f i l l t a b l e c
Write(i&'.sps'); −−w r i t e s n a p f i l e s : A. sns , B . sns , . . .

end;
ClearData(learn33);
Read('D.sps');
Write('\nRead the snapshot D.sps only:\n------------\n');
Writep(a,b,c);
ClearData(learn33);
Write('\nRead all snapshots cummulatively:\n------------\n');
for{i} do
Read('+:'&i&'.sps'); −− r e a d s n a p f i l e s cummula t ive

end
Writep(a,b,c);

end� �
Snapshot files are particular interesting, when a lenghty optimization takes place: After the optimiza-

tion, a snapshot can be written. At a later date, this snapshot can be read again and LPL’s data store is in
a state as if the optimization had taken place.

Several snapshots can be written to various files, as is done in the model above within the first loop.
What is interesting: all the snapshot can be read individually or cumulatively. Cumulatively means, that

1. The LPL internal store is augmented with an additional index-set called _SNAP_.
2. All data tables are expanded by the new index-set, that is, a singleton becomes indexed, a vector

becomes a two-dimensional table, etc.
3. The “slices” of the tables are cumulatively filled by each read snapshot.
4. At the end, we have all snapshots stored in parallel and the tables can be viewed as if they were

ordinary tables – augmented by the snapshot index-set.

104

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn33
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn33
https://matmod.ch/lpl/HTML/learn33.html

This allows the modeller to compare the different variants.
In the first loop of the model, the parameter a is modified to become: 10, 20, ... , 50, the tables b and

c are filled with different values and the snapshot files A.sps ... E.sps are written.
Then all data are cleared, with the exception of the set i which has the attribute frozen. Then just

one particular snapshot is read – the fourth (D.sps). And the data are written to control LPL’s data.
The data are again cleared and in the second loop, all snapshot files are read with the prefix reading

instruction +: , which means to read the snapshots cumulatively. All data are again written to view
LPL’s internal store.

105

61 Freeze function (learn34)
—- Run LPL Code , HTML Document –
Problem: This model is a small example that shows the use of the indexed Freeze function. “Freezing”
a variable means to fix its preset value and they are sent as fix bounds to the solver. Of course, LPL can
change there value at any time using an assignment.

“Freezing a constraint” means to drop a constraint such that the solver does not see it. Variables and
constraints can be “frozen” and “unfrozen” at any time using Freeze and Unfreeze.

Listing 63: The Complete Model implemented in LPL [2]� �
model learn34 " F r e e z e f u n c t i o n ";

set
i := [1..4];
j := [1..5];
c1{i} := i <= 3;;

binary variable
x{i,j};
p_C1{c1[i]};;

p_C1{c1[i]} := 0; / / Ass ign t h r e e v a r i a b l e s
Freeze({i|i=1} p_C1[i]); / / F r e e z e v a r i a b l e p_C1 [1] t o 0
constraint
C1{c1[i]} : sum{j} x[i,j] <= 1 + p_C1[i];

Freeze({i|i=2} C1[i]); / / F r e e z e a c o n s t r a i n t
maximize Obj: sum{i,j} x[i,j];
Write('Obj: %f\n', Obj);

end� �
The model above defines 3 variablesp_C1 – for the first three indexes ini. The following instructuion

fixes the first variable to zero:
Freeze({i|i=1} p_C1[i]);

This variable is sent to the solver as a fix-bounded variable.
The model also declares three constraints C1 of which the second is “frozen” with the instruction

Freeze({i|i=2} C1[i]);

To see the effect of these two instructions, the user must generate the EQU-file. LPL only generates the
two following constraints
C1[1]: - p_C1[1] + x[1,1] + x[1,2] + x[1,3] + x[1,4] + x[1,5] <= 1;
C1[3]: - p_C1[3] + x[3,1] + x[3,2] + x[3,3] + x[3,4] + x[3,5] <= 1;

One can also see that the value of p_C1[1 is 0 as it was frosen to that value.

106

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn34
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn34
https://matmod.ch/lpl/HTML/learn34.html

62 function En(), El() (learn35)
—- Run LPL Code , HTML Document –
Problem: All elements of a set in LPL have a ”dual nature”. The elements are first of all strings, even
if some have numerical values (with the exception 1..n – which are only numbers). But since all sets in
LPL are ordered, each element also has a position. The first element of a set has position 1 by default,
the second has position 2, and so on.

The function 𝐸𝑙(𝑖, 𝑒) retruns the position in set 𝑖 of element 𝑒, 𝑒 must be an element name – hence a
string. If 𝑒 is an index name it is automatically interpreted as a string.

The function 𝐸𝑛(𝑖, 𝑒) returns the element name in set 𝑖, 𝑒 must be the position of 𝑒 within 𝑖 – hence a
number. If 𝑒 is an index name then it is automatically interpreted as a number.

Listing 64: The Complete Model implemented in LPL [2]� �
model learn35 " f u n c t i o n En () , El () ";

set i:=[Aa Bb Cc Dd Ee Ff];
SetFocus();
NextFocus(0);
while NextPosition do Write(' %s', GetValueS(0)); end
Write('\nThe set i is: %3s\n', {i} i);
Write('The third element in i is: %s\n', En(i,3));
Write('Dd is at position %d in set i\n', El(i,'Dd'));
Write{i}('%s is at position %d\n',i, El(i,i));
Write{i}('The %d-th position is element %s\n',i, En(i,i));

end� �

107

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn35
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn35
https://matmod.ch/lpl/HTML/learn35.html

63 Show Graph.Bfs (learn36)
—- Run LPL Code , HTML Document –
Problem: This model shows the use of the function Graph.Bfs() which implements the depth first search
of a graph. The instruction in the model Graph.Bfs(e,p,0); explores the component starting at
node ’0’. The search tree is the subgraph with the red edges. A more interesting example is given in
model maze19.

Listing 65: The Complete Model implemented in LPL [2]� �
model learn36 "Show Graph . Bfs ";

parameter n:=[20] " Graph S i z e ";
set i,j "A s e t o f v e r t i c e s ";

e{i,j} "A edge l i s t ";
t{i,j} " t r e e edges ";

parameter p{i} " t h e s e a r c h t r e e ";
Graph.Bfs(e,p,0);
{i|p[i]<>-1} (t[i,p[i]]:=1, t[p[i],i]:=1);
model data;
parameter X{i}; Y{i}; m:=Trunc(Sqrt(n));;
i:=0..n-1;
X{i}:=(i%m+1)*2+Trunc(Rnd(0,2));
Y{i}:=(i/m+1)*2+Trunc(Rnd(0,2));
{i,j} if(Rnd(0,1)<=.03, (e[i,j]:=1, e[j,i]:=1));

end
model output friend data;
Draw.Scale(30,30);
Draw.DefFont('Verdana',8);
{e[i,j]} Draw.Line(X[i],Y[i],X[j],Y[j]);
{t[i,j]} Draw.Line(X[i],Y[i],X[j],Y[j],3,2);
{i} Draw.Circle(i&'',X,Y,.2,1,0);

end
end� �

19https://lpl.matmod.ch/lpl/Solver.jsp?name=/maze

108

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn36
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn36
https://matmod.ch/lpl/HTML/learn36.html
https://matmod.ch/lpl/HTML/maze.html

64 Show Graph.SPath (shortest path) (learn37)
—- Run LPL Code , HTML Document –
Problem: The function Graph.SPath() implement the Belman-Ford algorithm for the shortest path
problem.

Listing 66: The Complete Model implemented in LPL [2]� �
model learn37 "Show Graph . SPath (s h o r t e s t p a t h) ";

set i,j,k; e{i,j}; x{i,j};
parameter X{i}; Y{i};
parameter c{i,j|e}; len;
;
readgraph;
c{i,j}:=Sqrt((X[j]-X[i])^2+(Y[j]-Y[i])^2);
len:=Graph.SPath(c,x,1);
drawgraph;
model readgraph;
string parameter FILE:=['learn37.lpl'];
Read{i}(FILE&',%1:Coordinates', i,X,Y);
Read{i,j}('%1:Edges', i,j,e,c);
e{i,j}:=if(e,e,e[j,i]);

end
model drawgraph;
e[2,1]:=0;
Draw.Scale(60,60);
Draw.DefFont('Verdana',8);
{e[i,j]|x} Draw.Line(Round(c,-2)&'',X[i],Y[i],X[j],Y[j],3);
{i} Draw.Circle(i&'',X,Y,.2,1,0);

end
end� �

109

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn37
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn37
https://matmod.ch/lpl/HTML/learn37.html

65 Sl function (goal programming) (learn39)
—- Run LPL Code , HTML Document –
Problem: The function Sl(a,b) can be used to model “soft” constraints (goal programming), that is, it
introduces slack variables automatically and penalizes them in the objective function. “a” is an expression
that models the upper bound of the slack variable (the lower bound is 0). “b” is an expression for the
weight in the objective function. To explain the different usages, this model gives same hints.

Listing 67: The Complete Model implemented in LPL [2]� �
model learn39 " S l f u n c t i o n (g o a l programming) ";

set i:=1..3; j:=1..5; k:=1..3;
variable x{i}; y{i}; z{j}; w [0..0]; v;
parameter a{i}:=10*i; b{i}:=100*i;
parameter cc{i,k}:=k; ww{i,k}:=10*k;
constraint A{i}: w+x+y+sum{j} z >= 1 - Sl(a>11,a) - Sl(3,b);
constraint B{i|i<3}: x >= 2*i - Sl(2,0.9);
constraint C{i|i>1}: sum{j} z >= 1 - Sl{k|k<=2}(cc,ww);
constraint D{i|i>1}: sum{j} z >= 1 - sum{k|k<=2} Sl(cc,ww);
minimize obj: sum{i} x;
Write('The slacks of B are: %5.1f\n', {i|i<3} GetValue(B,9));
Write('Because: The values of the left hand side (x) are 0 2, the

right hand side are: 2 4\n');
end� �

In the constraint A the function Sl(a>11,10*i) is used. It adds a new indexed variable to the model
as follows:

variable A_x{i} [0..a>11];

The variable name is the corresponding constraint name plus ’_x’ . The upper bounds of these variables
are a[i]>11 (which is 0 for 𝑎1 and 1 for 𝑎2 and for 𝑎3 in this case). Slack variables with an upper bound
of 0 (since the lower bound is also 0) are eliminated automatically from the model. (Note: other variables
with a lower and upper bound of zero, like w are not eliminated from the model.) In addition, the following
terms are added to the objective function obj:

... + 20*A_x[2] + 30*A_x[3] + ...

Also in the constraint A a second function Sl(3,b) is used20. It adds a second slack variable to the
model with the fixed upper bound of 3 and a weight of 𝑏𝑖 to the objective function:

variable A_x1{i} [0..3]

The variable name is the corresponding constraint name plus ’_x1’ . (If several Sl functions occur
in a constraint, then the corresponding additional slack variables name contains an additional number
1, 2,….) It also adds the following terms to the objective function:

... +100*A_x1[1] +200*A_x1[2] +300*A_x1[3]

The constraint B displays the sparsity aspect. Since B is only defined for 𝑖 ≤ 2 the corresponding
slack variables B_x{i} are also generated with the same sparsity.

The constraint C and D are exactly the same. The Sl-function can be indexed and this is nothing else
than “syntax-sugar” and is translated into the constraint D where the index-list is removed from the Sl
and placed in a sum operator. The slack variables are indexed correspondingly. In the model case, the
variable definitions are:

20Note that it makes perfectly sense in real applications to used several slacks with different upper bounds and
penalties (weights) in the objectives. This allows the modeller to model piece-wise linear penalties for various
goals.

110

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn39
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn39
https://matmod.ch/lpl/HTML/learn39.html

C_x{i,k|i>1 and k<=2} [0..cc];
D_x{i,k|i>1 and k<=2} [0..cc];

The function GetValue(B,9) returns the value of the corresponding slack variable. Note also that the
compiler switch ’p’ adds a Sl function term to each constraint. LPL generates the following EQU-file
(equation listing) :
min: +10 D_x[1,2] +10 D_x[1,3] +20 D_x[2,2] +20 D_x[2,3] +10 C_x[1,2] +10 C_x[1,3]

+20 C_x[2,2] +20 C_x[2,3] +0.9 B_x[1] +0.9 B_x[2] +100 A_x1[1] +200 A_x1[2]
+300 A_x1[3] +20 A_x[2] +30 A_x[3] +x[1] +x[2] +x[3];

A[1]: +A_x1[1] +z[1] +z[2] +z[3] +z[4] +z[5] +y[1] +x[1] +w >= 1;
A[2]: +A_x1[2] +A_x[2] +z[1] +z[2] +z[3] +z[4] +z[5] +y[2] +x[2] +w >= 1;
A[3]: +A_x1[3] +A_x[3] +z[1] +z[2] +z[3] +z[4] +z[5] +y[3] +x[3] +w >= 1;
B[1]: +B_x[1] +x[1] >= 2;
B[2]: +B_x[2] +x[2] >= 4;
C[2]: +C_x[1,2] +C_x[2,2] +z[1] +z[2] +z[3] +z[4] +z[5] >= 1;
C[3]: +C_x[1,3] +C_x[2,3] +z[1] +z[2] +z[3] +z[4] +z[5] >= 1;
D[2]: +D_x[1,2] +D_x[2,2] +z[1] +z[2] +z[3] +z[4] +z[5] >= 1;
D[3]: +D_x[1,3] +D_x[2,3] +z[1] +z[2] +z[3] +z[4] +z[5] >= 1;

Note: the Sl function can also be added in an objective function, in this case, it implements a pre-
emptive goal programming, see model library21 and compare it with model library-122.

21https://lpl.matmod.ch/lpl/Solver.jsp?name=/library
22https://lpl.matmod.ch/lpl/Solver.jsp?name=/library-1

111

https://matmod.ch/lpl/HTML/library.html
https://matmod.ch/lpl/HTML/library-1.html

66 Parameterized Calling of Submodels (learn40)
—- Run LPL Code , HTML Document –
Problem: This model shows how one can generated several model ’variants’ using the subject_to at-
tribute. The variants depend on the parameter var. For example, if var=’case2’ then the model first
runs the submodel case2 then it continues running the main model which minimizes a function sub-
jected to the constraints defined in main model learn40 and in addition in the submodel addConst0.

Listing 68: The Complete Model implemented in LPL [2]� �
model learn40 " P a r a m e t e r i z e d C a l l i n g o f Submodels ";

var:='case2',
if(var='case1', case1,

var='case2', case2,
var='case3', case3,
var='case4', case4);

/ / o r a l t e r n a t i v e l y : RunMain ;
−−−−−−−− end main run : a l l d e c l a r a t i o n s b e g i n h e r e

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−− n o t e : d e c l a r a t i o n s can be i n ANY o r d e r

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
string parameter var; / / p a r a m e t e r t o choose " v a r i a n t "
set i;
parameter a{i}; c{i}; B;
integer variable x{i};
constraint C: sum{i} a*x = B;
minimize obj: sum{i} c*x
subject_to
if(var='case1',learn40,

var='case2',(learn40,addConst0),
var='case3',(learn40,addConst0),
var='case4',learn40);

Writep(x);
/ ∗ a l t e r n a t i v e l y : t h i s main model t o run

model RunMain ;
v a r : = ' c a s e 2 ' ;
i f v a r = ' c a s e 1 ' t h e n c a s e 1 ; o u t p u t ; end ;
i f v a r = ' c a s e 2 ' t h e n c a s e 2 ; end ;
i f v a r = ' c a s e 3 ' t h e n c a s e 3 ; end ;
i f v a r = ' c a s e 4 ' t h e n c a s e 4 ; end ;

end
∗ /

−−−−− t h e model " v a r i a n t s "
model case1;
myData0; aPlus10;

end
model case2;
Writep(var);
myData; addConst0;

end
model case3;
myData; aPlus10; addConst0;

end
model case4;
myData; minItems;

end
−−−−− s e v e r a l v a r i a t i o n s
model myData0;

112

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn40
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn40
https://matmod.ch/lpl/HTML/learn40.html

i := [1..10];
a{i} := [3 4 5 2 6 7 4 5 3 9];
c{i} := [2 3 5 7 9 8 6 4 2 1];
B := 233;

end
model myData "A model d a t a (d e f i n i n g t h e base c a s e) ";
i := [chocolate milk apple water mais chips tomatoes beer wine

tabacco];
a{i} := [3 4 5 2 6 7 4 5 3 9];
c{i} := [2 3 5 7 9 8 6 4 2 1];
B := 233;

end
model aPlus10 " Augment a by 1 ";
a{i} := a+1;

end
model addConst0 " E x a c t l y 30 i t e m s ";
constraint A: sum{i} x = 30;

end
model minItems " Minimize t h e number o f i t e m s ";
Freeze(obj); / / r e p l a c e o b j e c t i v e f u n c t i o n ! ! !
minimize minI: sum{i} x subject_to learn40;

end
model output;
Write('Capacity is: %d\n', B);

end
end� �

113

67 A Model with Parameters I (learn41)
—- Run LPL Code , HTML Document –
Problem: A model in LPL is like a function – by the way model and function are exchangable
keywords – that can be called and can return a value. The first example is mymodel, a parameterless
model that returns 4.

model mymodel;
return 2*2;

end

Models definition can also contain formal parameters like isSlotEarly. This model calls itself other
functions and returns a Boolean value. Note that recursive calls are not possible in LPL.

function isSlotEarly(integer _d1; _d2);
return isSlotE(_d1,_d2) or isSlotSE(_d1,_d2)

or isSlotE1(_d1,_d2);
end

A Third example is the function Euclid which returns the greatest common dividor of two positive
integers.

model Euclid(integer a;b);
integer t;
return while(b>0,(t:=a, a:=b, b:=t%b, a));

end

Common to all these functions is that the formal parameters must be declared as parameters and are sin-
gleton (not indexed). In this case, the parameters are passed as value (not as reference). Model learn4223
shows an example where parameters are passed by reference.

Listing 69: The Complete Model implemented in LPL [2]� �
model learn41 "A Model wi th P a r a m e t e r s I ";

parameter e_StartE :=10; e_EndE:=100;
parameter e_StartSE:=11; e_EndSE:=90;
parameter e_StartE1:=12; e_EndE1:=80;
function isSlotE(integer _d1; _d2);
return _d1 >= e_StartE and _d2 <= e_EndE and _d1 <= _d2;

end
function isSlotSE(integer _d1; _d2);
return _d1 >= e_StartE and _d2 <= e_EndE and _d1 <= _d2;

end
function isSlotE1(integer _d1; _d2);
return _d1 >= e_StartE and _d2 <= e_EndE and _d1 <= _d2;

end
function isSlotEarly(integer _d1; _d2);
return isSlotE(_d1,_d2) or isSlotSE(_d1,_d2)

or isSlotE1(_d1,_d2);
end
model Euclid(integer a;b);
integer t;
return while(b>0,(t:=a, a:=b, b:=t%b, a));

end
model mymodel;
return 2*2;

end
Write('\'mymodel\' called, returns : %d\n', mymodel);

23https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn42

114

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn41
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn41
https://matmod.ch/lpl/HTML/learn41.html
https://matmod.ch/lpl/HTML/learn42.html

Write('%b\n', isSlotEarly(20,110));
Write('gcd of 994009 and 96709 is : %d\n', Euclid(994009,96709));

end� �

115

68 A Model with Parameters II (learn42)
—- Run LPL Code , HTML Document –
Problem: This model shows submodels (functions) with argumants. It contains two sobmodels mult2
that returns a value multiplied by 2. The formal parameter is an expression or a singleton parameter. In
this case, they are passed by value.
The second submodel knapsack is a complete knapsack model with 5 formal parameters being passed.
It encapsulates a complete optimisation model and return the objective value. 4 of the five parameters are
passed by reference and one is passed by value (K) because it is a singleton parameter. When calling
the model the parameters must exactly match: a set must be called as a set, a varibale must be called as
a variable, even the type must match: If a formal parameter is defined as an integer variable then it must
also be called as an integer variable.
The third example is the model returnAsIs. The argument x is a singleton value, so it must be passed
by value. However the call of the function contains a indexed parameter, but since it is passed as A[j]
it is considered as an expression and hence pass by value.

Listing 70: The Complete Model implemented in LPL [2]� �
model learn42 "A Model wi th P a r a m e t e r s I I ";

integer x:=2;
integer y:=mult2(x+1); / / p a s s by v a l u e
integer z:=mult2(4); / / p a s s by v a l u e
Writep(y,z);
−−−−−−−−−−−−−−−−−−−−−−−−−−
set j:=1..10;
parameter A{j} := Trunc(Rnd(3,7));
parameter B{j} := Trunc(Rnd(30,50));
integer variable X{j};
parameter KK:=40;
parameter obj:=knapsack(j,KK,A,B,X); / / p a s s by r e f and v a l u e
Writep(obj,X);
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Write{j}('%d\n', returnAsIs(A[j])); / / p a s s by v a l u e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
integer model mult2(integer n);
return 2*n;

end;
real model knapsack(set i; parameter K; a{i}; b{i}; integer variable

x{i});
constraint A: sum{i} a*x <= K;
maximize obj: sum{i} b*x;
return obj;

end;
model returnAsIs(integer x);
return x;

end
end� �

116

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn42
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn42
https://matmod.ch/lpl/HTML/learn42.html

69 Pivot Table (learn43)
—- Run LPL Code , HTML Document –
Problem: Download the model and open the 4-dimensional table 𝑎 in lplw.exe and play around.

Listing 71: The Complete Model implemented in LPL [2]� �
model learn43 " P i v o t Tab le ";

set i; j; k; h;
parameter a{i,j,k,h};
model data;

i:=[1,2];
j:=[1 2 3];
k:=[1 2 3 4];
h:=[1 2 3 4 5];
a{i,j,k,h}:=if(i=1 and j=2 and k=3 and h=4,0,i*j*k*h));

end
end� �

117

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn43
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn43
https://matmod.ch/lpl/HTML/learn43.html

70 Colored Report (learn44)
—- Run LPL Code , HTML Document –
Problem: (This model supposes that you understand how FastReport works.) This model shows a report
that colors the cells depending on their values: positive value are blue, negative values are red.

The first Write creates a new database and adds a table titleP with the unique field ’titel’ and a unique
row with the entry ’Titel’. Furthermore it will create two ReportBands: a TfrxReportTitle with a
unique TfrxMemoView named titleP_titel, and a TfrxPageFooter (Option ’0’).

The second Write adds adatabas etable named tableH with 5 fields named b, a1,a2,a3,a4. Their
content is ’ ’ (a blank), and the elements of p (2007 2008 2009 2010). Furthermore, it adds a ReportBand
TfrxPageHeader with the corresponding fields.

The third Write adds a table ReportColor and adds 9 fields. It will also add a ReportBandTfrxMasterData.
Finally it generates the report template ReportColor.fr3 (if it does not exist). Then it creates a pdf
file of the entire report.

If the report template ReportColor.fr3 has been created then add the following code to the code
page of ReportColor.fr3 :
function rgb(r,g,b:int):int;
var c:int;
begin c:=trunc(b); c:=c shl 8 + trunc(g); c:=c shl 8 + trunc(r);

result:=c;
end;

function col(Sender: TfrxMemoView) : int;
var d,a: double; x:int;
begin

d := 150;
a := Sender.Value;
if (a<=511) and (a>=-511) then x:=trunc(d*abs(a)) else x:=511;
if a<0 then begin if x>255 then x:=rgb(511-x,0,0) else x:=rgb(255,255-x,255-x); end
else begin if x>255 then x:=rgb(0,0,511-x) else x:=rgb(255-x,255-x,255); end;
//if (a<0) then Sender.Font.Color:=clWhite;
Result:=x;

end;

procedure EvalOnAfterData(Sender: TfrxMemoView);
begin

Sender.Color:=col(Sender);
end;

begin

end.

Then dd the function EvalOnafterData as an event OnafterData to the four MemoViews
ReportColor_a1 .. ReportColor_a4.

118

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn44
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn44
https://matmod.ch/lpl/HTML/learn44.html

71 Circular Time Lag Operator (learn45)
—- Run LPL Code , HTML Document –
Problem: Since a set in LPL is always ordered, we can define circular relations (first element follows the
last one).

Listing 72: The Complete Model implemented in LPL [2]� �
model learn45 " C i r c u l a r Time Lag O p e r a t o r ";

set i " p e r i o d s " := [1 2 3 4 5 6 7 8 9 10 11 12];
parameter s{i} " number o f d e s k s open i n a p e r i o d "

:= [10 10 8 8 14 14 5 5 3 3 8 8];
t{i} :=

[9.2 8.8 8.8 8.4 8.0 8.0 8.4 8.8 8.8 9.2 9.6 9.6];
variable x{i} " number o f c l e r c s b e g i n n i n g i n p e r i o d e i ";
constraint

r{i}: x + x[i%#i+1] + x[(i+2)%#i+1] + x[(i+3)%#i+1] >= s;
minimize z: sum{i} t*x;
Writep(z,x);

end� �

119

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn45
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn45
https://matmod.ch/lpl/HTML/learn45.html

72 Function xP (learn46)
—- Run LPL Code , HTML Document –
Problem: The function xP(C,n) return the position of the n-th index. In the example a matrix table 𝑐,𝑗 von
10 × 10 with random values between 1 and 100 is created. The values are sorted and the result is stored
in the permutation C. C holds the position of the values, but the position is a single integer, counting the
entries in a lexicographical way. so if C[i,j] is 46, for example then xP(C,1) is 5 and xP(C,2) is 6, defining
the entry (5, 6) in the 𝑐𝑖,𝑗 table.

Listing 73: The Complete Model implemented in LPL [2]� �
model learn46 " F u n c t i o n xP ";

set i,j := 1..10;
parameter C{i,j}; c{i,j}:=Trunc(Rnd(1,100));
Sort(c,C);
Write{i,j}('%2d %2d %3d %5.2f\n', xP(C,1),xP(C,2),C,c[C]);

end� �

120

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn46
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn46
https://matmod.ch/lpl/HTML/learn46.html

73 A logical constraint (learn47)
—- Run LPL Code , HTML Document –
Problem:

Listing 74: The Complete Model implemented in LPL [2]� �
model learn47 "A l o g i c a l c o n s t r a i n t ";

set i:=1..5;
binary variable y; x{i};
constraint
AND: y = and{i} x;

maximize obj: y;
end� �

121

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn47
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn47
https://matmod.ch/lpl/HTML/learn47.html

74 Run some code inside a constraint (learn48)
—- Run LPL Code , HTML Document –
Problem: Just before a constraint is generated, one can run some code to create data for that constraint.
The code (n:=i , m:=i^2) is run just before the constraint is generated in this model:

Listing 75: The Complete Model implemented in LPL [2]� �
model learn48 " Run some code i n s i d e a c o n s t r a i n t ";

set i:= 1..10;
parameter n; m;
variable x{i}; y;
constraint A{i}: (n:=i , m:=i^2) , x[i]+y = n+m; / / c o o l f e a t u r e
minimize obj: y;

end� �
It is important to put the code inside parentheses if more then one expression (assignment) is to be

executed before the constraint. Furthermore, the code cannot contain variables, and the actual constraint
expression (here x[i]+y = n+m) must follow after the comma.

This feature could also be used to run some output to debug the constraint generation as in:
parameter R{i};
....
constraint A{i}: Write('+:file.txt','%3d\n',n) , x[i]+y = R[i];

122

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn48
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn48
https://matmod.ch/lpl/HTML/learn48.html

75 Queue and Map data structure (learn49)
—- Run LPL Code , HTML Document –
Problem: Create Queue mit 10 entries, EnQueue the number 1..5 then DeQueue them. Next: Add 5
elements (1..5) to a Map then check whether the number 1..10 are in the Map. For an interesting model
see rushhour24.

Listing 76: The Complete Model implemented in LPL [2]� �
model StructTest " Queue and Map d a t a s t r u c t u r e ";

set i:=1..5;
Struct.Queue(10);
{i} Struct.EnQueue(i);
Write{i}('%d\n',Struct.DeQueue());
set j:=1..10;
{i} Struct.AddMap(i);
Write{j}('%b\n',Struct.InMap(j));
/ / f r e e memory of Queue and Hash (Map) i s a u t o m a t i c

end� �

24https://lpl.matmod.ch/lpl/Solver.jsp?name=/rushhour

123

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn49
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn49
https://matmod.ch/lpl/HTML/learn49.html
https://matmod.ch/lpl/HTML/rushhour.html

76 Greatest Common Divider (learn51)
—- Run LPL Code , HTML Document –
Problem: This model implements a simple (inefficient) algorithm for finding the greatest common dividor
(gcd) of two numbers. It loops through all numbers i from 1 to the smaller of both integers and check if
both numbers are divisible by i. If this is the case it stores it (in d). The last encountered number is then
the gcd.

Listing 77: The Complete Model implemented in LPL [2]� �
model gcd " G r e a t e s t Common D i v i d e r ";

integer a := 1943; b := 2813;
c := if(a<b, a, b);
d := 1;

for{i in 1..c} do
if a%i = 0 and b%i = 0 then

d:=i;
end

end
Write('The gcd of %d and %d is %d\n', a, b, d);

end� �

124

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn51
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn51
https://matmod.ch/lpl/HTML/learn51.html

77 Topological Sorting (learn52)
—- Run LPL Code , HTML Document –
Problem: The function Topo() returns a topological sorting of the nodes of a DAG (a Directed Acyclic
Graph). As one can see from the Figure 10, the graph is a DAG (it does not contain a cycle) and there is
a unique topological sorting of the nodes (red).

Listing 78: The Complete Model implemented in LPL [2]� �
model Topo " T o p o l o g i c a l S o r t i n g ";

set i,j:=[1..5] " nodes ";
set dag{i,j}:=
[(2,1) (3,1) (3,2) (3,4) (4,1) (4,2) (5,1)
(5,2) (5,3) (5,4)] " a r c l i s t o f a DAG";

model output;
parameter Z{i};
Graph.Topo(dag,Z);
Write('Sequence=%3d\n', {i} Z);
parameter r:=#i*3; PI:=3.14159;

X{i}:=r+r*Sin(2*PI*(i-1)/#i);
Y{i}:=r+r*Cos(2*PI*(i-1)/#i);

Draw.Scale(10,10);
Draw.DefFont('Verdana',12);
{i,j|dag} Draw.Arrow(X[i],Y[i],X[j],Y[j],2,0,1);
{i|i<#i} Draw.Arrow(X[Z[i]],Y[Z[i]],X[Z[i+1]],Y[Z[i+1]],2,3,4);
{i} Draw.Circle(i&'',X,Y,2,1,0);

end
end� �

1

2

34

5

Figure 10: The Solution DAG annd the its Longest Path (red)

125

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn52
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn52
https://matmod.ch/lpl/HTML/learn52.html

78 Reading various data sets (learn53)
—- Run LPL Code , HTML Document –
Problem: The model contain two data sets: one for a very small model instance, the other for a larger
model. One can call either. There are two methods: One method to switch various data sets for the same
model is to specify a parameter (here selectData) and depending on its value to choose the data set
(either data1 or data2). By default here the data set data1 ia chosen. If one wants to run the data
set data2 instead – without changing the code – then LPL needs to be called as follows:

lplc learn53 - selectData=2

Another method is to store the data sets in different files – then one would choose the file in the APL
(applied parameter list). For that the two following lines in the model must be removed :

parameter selectData := [1];
...
if selectData=1 then data1; else data2; end;

And LPL must be called by
lplc learn53 - @IN=data2

Note: IN is a fixed APL parameter to a link for the data file.
Listing 79: The Complete Model implemented in LPL [2]� �

model learn53 " Reading v a r i o u s d a t a s e t s ";
parameter selectData := [1];
set i; j;
parameter a{i,j}; c{j}; b{i};
variable x{j};
constraint C{i}: sum{j} a[i,j]*x[j] <= b[i];
if selectData=1 then data1; else data2; end;
maximize Obj: sum{j} c[j]*x[j];
Write('Objective Value = %7.2f \n', Obj);
Write{j|x}(' x%-4s = %6.2f\n' , j,x);
model data1;
i := [1 2];
j := [a b];
b{i} := [350 300];
c{j} := [300 200];
a{i,j} := [5 5 , 6 2];

end;
model data2;
parameter m := 1000; n := 2000;;
i := 1..m; j := 1..n;
a{i,j} := if(Rnd(0,1)<0.02 , Rnd(0,60));
c{j} := if(Rnd(0,1)<0.87 , Rnd(0,9));
b{i} := if(Rnd(0,1)<0.87 , Rnd(10,70000));

end;
end� �

126

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn53
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn53
https://matmod.ch/lpl/HTML/learn53.html

79 How to call a OS function (learn54)
—- Run LPL Code , HTML Document –
Problem: A operating system function or a program can be called from LPL.A example is:

Listing 80: The Complete Model implemented in LPL [2]� �
model learn54 "How t o c a l l a OS f u n c t i o n ";

/ / OSCall (' n o t e p a d . exe ') ; / / c a l l i n g n o t e p a d
OSCall('cmd /c mkdir xyz'); / / c r e a t e s a d i r e c t o r y c a l l e d xyz

end� �

127

https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn54
https://lpl.matmod.ch/lpl/Solver.jsp?name=/learn54
https://matmod.ch/lpl/HTML/learn54.html

80 Draw Lines/Opacity (xDrawAll)
—- Run LPL Code , HTML Document –
Problem:

Listing 81: The Complete Model implemented in LPL [2]� �
model xDrawAll " Draw L i n e s / O p a c i t y ";

Draw.DefFont('Verdana,sans-serif',13,-2,2);
Draw.DefFill('rect',Rgb(0,255,0));
Draw.DefFill('circle',Rgb(255,255,51),Rgb(180,180,180),10);
Draw.DefFill('circle.d',-1,-2,1);
Draw.DefFill('path',Rgb(0,255,0),0);
Draw.DefFill('path.d',-1,Rgb(0,255,0),10);
Draw.DefLine('path.e',-2,-2,-2,-2,3);
Draw.DefLine('path.f',-2,-2,-2,-2,2);
Draw.DefLine('path.g',-2,-2,-2,-2,1);
Draw.DefFill('line.x',-1,Rgb(0,255,0),20);
Draw.DefFill('line.d',-1,Rgb(0,255,0),2);
Draw.DefLine('line.r',-2,-2,-2,2);
Draw.DefLine('line.s',-2,-2,-2,3);
Draw.DefLine('line.dash',8,3);
set i:=[1..5];
parameter o1{i}:=[1 .2 .8 .5 1];

o2{i}:=[1 .2 .8 1 .5];
string t{i}:=['normal','opacity .2','opacity .8','fill-opacity .5','

stroke-opacity.5'];
for{i in 1..5} do
Draw.Rect(20+140*(i-1),30,120,60);
Draw.Circle(80+140*(i-1),60,50,-2,-2,-2,o1,o2);
Draw.Text(t,22+140*(i-1),130);

end;
set j:=[1..3]; string parameter t1{j}:=['the form','fill-rule:nonzero

','fill-rule:evenodd'];
parameter px{i}:=[120,-90,30,30,-90];

py{i}:=[0,100,-70,70,-100];
for{j in 1..3} do
Draw.Path('M',20+200*(j-1),150);
for{i} do Draw.Path('l',px,py); end;
Draw.Path('Y',if(j=1,-1,-2),-2,-2,-2,-2,if(j=3,2,-2));
Draw.Text(t1,100+200*(j-1),210);

end;
Draw.Line('#x',30,400,30,300);
Draw.Line('#r x',80,400,80,300); / / s t r o k e − l i n e c a p : round
Draw.Line('#s x',130,400,130,300); / / s t r o k e − l i n e c a p : s q u a r e
Draw.Line(10,300,163,300,0,1);
Draw.Line(10,400,163,400,0,1);
Draw.Text('stroke-linecap',20,430);
Draw.Text('butt',15,340);
Draw.Text('round',65,360);
Draw.Text('square',115,380);
Draw.Path('M',180,400); Draw.Path('l',120,-50); Draw.Path('l'

,-70,100);
Draw.Path('#d e','Y');
Draw.Text('stroke-linejoin:round',240,440);
Draw.Path('M',220,370); Draw.Path('l',120,-50); Draw.Path('l'

,-70,100);
Draw.Path('#d f','Y');

128

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawAll
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawAll
https://matmod.ch/lpl/HTML/xDrawAll.html

Draw.Text('stroke-linejoin:bevel',280,410);
Draw.Path('M',260,340); Draw.Path('l',120,-50); Draw.Path('l'

,-70,100);
Draw.Path('#d g','Y');
Draw.Text('stroke-linejoin:miter',320,380);
Draw.Line('#dash',690,460,590,265,2,3);

end� �
Output as follows:

normal opacity .2 opacity .8 fill-opacity .5 stroke-opacity.5

the form fill-rule:nonzero fill-rule:evenodd

stroke-linecap

butt

round

square

stroke-linejoin:round

stroke-linejoin:bevel

stroke-linejoin:miter

Figure 11: Output

129

81 Use arc path (xDrawArcPath)
—- Run LPL Code , HTML Document –
Problem:

Listing 82: The Complete Model implemented in LPL [2]� �
model xDrawArcPath " Use a r c p a t h ";

Draw.Scale(2,2);
−−Draw . S c a l e (2 , −2) ;
Draw.Path('M',20,255);
Draw.Path('L',100,255);
Draw.Path('A',10,70,90,1,1,180,255);
Draw.Path('A',70,100,70,1,0,260,255);
Draw.Path('L',370,255);
Draw.Path('Y',-1,0);
Draw.Circle(20,255,3);
Draw.Circle(100,255,3);
Draw.Circle(180,255,3);
Draw.Circle(260,255,3);
Draw.Circle(370,255,3);

end� �
Output as follows:

Figure 12: Output

130

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawArcPath
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawArcPath
https://matmod.ch/lpl/HTML/xDrawArcPath.html

82 Drawing Circles (xDrawCircle)
—- Run LPL Code , HTML Document –
Problem:

Listing 83: The Complete Model implemented in LPL [2]� �
model xDrawCircle " Drawing C i r c l e s ";

−−Draw . S c a l e (3 , 3) ;
Draw.Scale(2,-5);
Draw.Circle(15,15,10,2,3,5);
Draw.Circle('0.5',40,40,10,1,0);
Draw.Ellipse('12.0',60,0,30,20,2,3,4,0.2,0.2);
Draw.DefLine('dash',8,3,0);
Draw.Ellipse('#dash','14.0',120,50,40,50,2,3,4);
Draw.Triangle(0,80,20);

end� �
Output as follows:

0.5

12.0

14.0

Figure 13: Output

131

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawCircle
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawCircle
https://matmod.ch/lpl/HTML/xDrawCircle.html

83 A Quadratic Constraint (xDrawCircle1)
—- Run LPL Code , HTML Document –
Problem: This is a small model with a (convex) quadratic constraint. Note that this model can only be
solved with particular solvers such as Cplex12. Therefore we force the use of this solver using the LPL
function SetSolver(...).

The submodel draw produces the picture in Figure 14.

Figure 14: The Solution
The model is as follows:

Listing 84: The Complete Model implemented in LPL [2]� �
model xDrawCircle1 "A Q u a d r a t i c C o n s t r a i n t ";

−−S e t S o l v e r (k n i t r o L S o l) ;
variable x; y; v; w;
constraint A: x^2 + y^2 <= 1;
maximize obj: x+y;
Writep(x,y);
draw;
model draw;
Draw.Scale(100,100);
Draw.Circle(2,2,1,-1,0);
Draw.Line(2,0,2,4);
Draw.Line(0,2,4,2);
Draw.Line(2,0.58,3.42,2,3,3);
Draw.Circle(x+2,2-y,.04);
Draw.Text('(x,y) = ('&Round(x,-2)&' , '&Round(y,-2)&')',2+x,1.8-y);

end
end� �

132

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawCircle1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawCircle1
https://matmod.ch/lpl/HTML/xDrawCircle1.html

84 Show Color Numbers in LPL (xDrawColors)
—- Run LPL Code , HTML Document –
Problem: Colors assignment in LPL to positive integers.

Listing 85: The Complete Model implemented in LPL [2]� �
model xDrawColors "Show Colo r Numbers i n LPL";

set y:=[1..8] " E i g h t c o l o r t a b l e s ";
x:=[1..32] " 32 d a r k n e s s i n g r a d i e n t s ";

integer parameter a{y,x}:= 32*(y-1)+x-1;
integer parameter b{y,x}:= 32*(y-1)+32-x;
Draw.Scale(30,30);
Draw.Line(1,1,2,1,1);
Draw.Text('The color numbers 0 to 255 in LPL are as follows:',2,2,30)

;
{y,x} Draw.Rect((32*(y-1)+x-1)&'',x,y+2,1,1,a);
−−− u s i n g RGB f u n c t i o n f o r c o l o r s .
{i in 1..256} Draw.Rect((i-1)/8,12,1/8,2,Rgb(0,0,i-1),Rgb(0,0,i-1));
{i in 1..256} Draw.Rect((i-1)/8,15,1/8,2,Rgb(i-1,i-1,255),Rgb(i-1,i

-1,255));
end� �
Output is as follows:

The color numbers 0 to 255 in LPL are as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Figure 15: Output

133

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawColors
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawColors
https://matmod.ch/lpl/HTML/xDrawColors.html

85 Draw Filters (xDrawFilters)
—- Run LPL Code , HTML Document –
Problem: This model example shows SVG filters.

Listing 86: The Complete Model implemented in LPL [2]� �
model xDrawFilters " Draw F i l t e r s ";

Draw.DefFilter('f', 9,11,1, 4); / / 9= f e G a u s s i a n B l u r
Draw.DefFilter('f',13,1 ,2, 4,4); / / 13= f e O f f s e t
Draw.DefFilter('f',14,1 ,3, 5,.75,20,-2,Rgb(187,187,187));

/ / 14= f e S p e c u l a r L i g h t i n g
Draw.DefFilter('f',18 ,-5000,-10000,20000); / / 18= f e P o i n t L i g h t
Draw.DefFilter('f', 4,3,11,3,2); / / 4= feCompos i t e
Draw.DefFilter('f', 4,10,3,4,6,0,1,1,0); / / 4= feCompos i t e
Draw.DefFilter('f',11); / / 11= feMerge
Draw.DefFilter('f',24,2); / / 24=feMergeNode
Draw.DefFilter('f',24,4); / / 24=feMergeNode
Draw.Rect(1,20,198,85,Rgb(136,136,136),4);
/ / Draw . Group (' # f ') ;
Draw.Path('#f','M50,90 C0,90 0,30 50,30 L150,30 C200,30 200,90 150,90

z',-1,5,10);
Draw.Path('#f','M60,80 C30,80 30,40 60,40 L140,40 C170,40 170,80

140,80 z',5);
/ / Draw . EndGroup () ;
Draw.Text('#f','LPL',62,76,40);
Draw.Rect(1,125,198,60,Rgb(136,136,136),4);
Draw.Circle('#f',30,155,25,2);
Draw.Rect('#f',70,130,50,50,3);
Draw.Path('#f','M130,155 l50,-25 l0,50 z',4);

end� �
Output as follows:

134

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawFilters
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawFilters
https://matmod.ch/lpl/HTML/xDrawFilters.html

Figure 16: Output

135

86 Show radial gradient (xDrawGrad0)
—- Run LPL Code , HTML Document –
Problem:

Listing 87: The Complete Model implemented in LPL [2]� �
model xDrawGrad0 "Show r a d i a l g r a d i e n t ";

Draw.DefFont('Verdana,sans-serif',50,-2,-2,2);
parameter blue:=5; yellow:=6; red:=3;
Draw.DefGrad('rgr1' ,1,.5,.5,.5, .5,.5, 0,blue,1,yellow);
Draw.DefGrad('rgr2' ,1,.9,.5,.5, .9,.5, 0,blue,1,yellow);
Draw.DefGrad('rgr3' ,1,.3,.7,.7, .3,.7, 0,blue,1,yellow);
Draw.DefGrad('rgr4' ,1,.5,.5,.5, .5,.5, 0,blue,.5,yellow,1,blue);
Draw.DefGrad('rgr5' ,1,.5,.5,.5, 1,.5, 0,blue,1,yellow);
Draw.DefGrad('rgr6' ,1,.5,.5,.5, .5,1, 0,blue,1,yellow);
Draw.DefGrad('rgr7' ,1,.8,.3,.9, .8,.3, 0,blue,1,yellow);
Draw.DefGrad('rgr8' ,1,.5, 1,.9, .3,0, 0,blue,1,yellow);
Draw.DefGrad('rgr9' ,1,.5,.5,.5, .5,.5, 0,blue,1,yellow);
Draw.DefGrad('rgr10',2,.5,.5,.2, .5,.5, 0,blue,1,yellow); −−

spreadMethod = ' r e p e a t ' ,
Draw.DefGrad('rgr11',3,.5,.5,.5, .5,.5, 0,blue,1,yellow); −−

spreadMethod = ' r e f l e c t
Draw.DefGrad('rgr12',1,.5,.5,.5, .5,.5, .3,blue,.7,yellow);
Draw.DefGrad('rgr_text',1,.5,.5,.8, .5,1, 0,red,.25,yellow,.5,blue

,.75,yellow,1,red);
for{i in 1..12} do Draw.Rect('#rgr'&i,20+200*Trunc((i-1)/4),20+100*(i

-1)%4,180,80); end
−−Draw . Text (' # r g r _ t e x t ' , ' r a d i a l G r a d i e n t&apos ; s ' , 5 0 , 4 6 5) ;
Draw.Text('#rgr_text','radialGradient\'s',50,465);

end� �
Output as follows:

radialGradient's
Figure 17: Output

136

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawGrad0
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawGrad0
https://matmod.ch/lpl/HTML/xDrawGrad0.html

87 Show linear gardient (xDrawGrad1)
—- Run LPL Code , HTML Document –
Problem:

Listing 88: The Complete Model implemented in LPL [2]� �
model xDrawGrad1 "Show l i n e a r g a r d i e n t ";

Draw.DefFont('Verdana,sans-serif',50);
Draw.DefFill('id',-2,0);
parameter blue:=5; yellow:=6; red:=3; limegreen:=4; green:=13; white

:=1;
Draw.DefGrad('lgr1' ,1,0,0,1,0,0, 0,blue,1,yellow);
Draw.DefGrad('lgr2' ,1,0,0,1,0,0, .2,blue,.8,yellow);
Draw.DefGrad('lgr3' ,1,0,0,1,0,0, .4,blue,.6,yellow);
Draw.DefGrad('lgr4' ,1,0,0,1,0,0, .5,blue,.5,yellow);
Draw.DefGrad('lgr5' ,1,0,0,1,0,0, 0,red,1,limegreen);
Draw.DefGrad('lgr6' ,1,0,0,0,1,0, 0,red,1,limegreen);
Draw.DefGrad('lgr7' ,1,0,0,1,1,0, 0,red,1,limegreen);
Draw.DefGrad('lgr8' ,1,0,1,1,0,0, 0,red,1,limegreen);
Draw.DefGrad('lgr9' ,1,0,0,1,0,0, 0,blue,.25,yellow,.5,red,.75,green

,1,blue);
Draw.DefGrad('lgr10',1,0,0,1,0,0, 0,blue,.2,yellow,.8,yellow,1,blue);
Draw.DefGrad('lgr11',1,0,0,1,0,0, 0,blue,.1,yellow,.2,white,.9,blue);
Draw.DefGrad('lgr12',1,0,0,1,1,0, 0,white,.3,yellow,.5,blue,.7,yellow

,1,white);
for{i in 1..12} do Draw.Rect('#lgr'&i,20+200*Trunc((i-1)/4),20+100*(i

-1)%4,180,80); end
Draw.Text('#lgr9 id','linearGradient\'s',50,465);

end� �
Output as follows:

linearGradient's
Figure 18: Output

137

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawGrad1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawGrad1
https://matmod.ch/lpl/HTML/xDrawGrad1.html

88 Show figures with gradient (xDrawGrad2)
—- Run LPL Code , HTML Document –
Problem:

Listing 89: The Complete Model implemented in LPL [2]� �
model xDrawGrad2 "Show f i g u r e s wi th g r a d i e n t ";

/ / h t t p : / / www. w3 . org / G r a p h i c s /SVG/ IG / r e s o u r c e s / s v g p r i m e r . h tml # p r e f a c e
parameter white:=1; black:=0;
Draw.DefGrad('rGr',-2,-2,-2,-2,-2,-2, 0,white,1,black);
Draw.Path('M',100,200,200,200,150,100); Draw.Path('#rGr','Z',-2,0,2);
Draw.DefGrad('lGr',-2,-2,-2,-2,-2,-2, 0,white,1,black);
Draw.Path('M',210,200,310,200,260,100); Draw.Path('#lGr','Z',-2,0,2);
Draw.DefGrad('rid',1,-2,-2,.65, .05,.05, 0,Rgb(0,238,0), 1,Rgb

(0,102,0));
Draw.Rect('#rid',340,100,100,100,-2,Rgb(0,80,0),3,1,1,10,10);

end� �
Output as follows:

Figure 19: Output

138

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawGrad2
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawGrad2
https://matmod.ch/lpl/HTML/xDrawGrad2.html

89 Check Points inside a Polygon (xDrawInside)
—- Run LPL Code , HTML Document –
Problem: The Geom.Inside(X,Y,kxa,kya) checks whether a point (X,Y) is inside a (simple) polygon
consisting of 𝑘 points (xy,ya).

Listing 90: The Complete Model implemented in LPL [2]� �
model xDrawInside " Check P o i n t s i n s i d e a Polygon ";

set i:=1..1000 " g e n e r a t e 1000 p o i n t s (X,Y) ";
k:=1..8;

parameter PI:=3.14159;
X{i}:=Rnd(0,1); Y{i}:=Rnd(0,1);
xa{k}:=.5+Sqrt(1/5)*Sin(PI/#k+2*PI*(k-1)/#k);
ya{k}:=.5+Sqrt(1/5)*Cos(PI/#k+2*PI*(k-1)/#k);

Draw.Scale(100,100);
/ / draw t h e po lygon
{k} Draw.Path('B',xa,ya); Draw.Path('z',1,0);
/ / draw on ly t h e p o i n t s n o t i n s i d e t h e po lygon
{i|~Geom.Inside(X,Y,{k}xa,{k}ya)} Draw.Circle(X,Y,.005);

end� �
Output as follows:

Figure 20: Output

139

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawInside
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawInside
https://matmod.ch/lpl/HTML/xDrawInside.html

90 Check Two Segments intersect (xDrawIntersect)
—- Run LPL Code , HTML Document –
Problem: The segment between the two points 8 and 4 and the segment between the two points 1 and 2
intersect, while The segment between the two points 5 and 2 and the segment between the two points 1
and 9 no not intersect.

Listing 91: The Complete Model implemented in LPL [2]� �
model xDrawIntersect " Check Two Segments i n t e r s e c t ";

set i:=1..10 " g e n e r a t e 100 p o i n t s (X,Y) ";
k:=1..8;

SetRandomSeed(1);
parameter PI:=3.14159;

X{i}:=Rnd(0,10); Y{i}:=Rnd(0,10);
xa{k}:=.5+Sqrt(1/5)*Sin(PI/#k+2*PI*(k-1)/#k);
ya{k}:=.5+Sqrt(1/5)*Cos(PI/#k+2*PI*(k-1)/#k);

Draw.Scale(50,50);
Draw.Line(X[8],Y[8],X[4],Y[4],0,3);
Draw.Line(X[1],Y[1],X[2],Y[2],0,3);
Draw.Line(X[5],Y[5],X[2],Y[2],3,3);
Draw.Line(X[1],Y[1],X[9],Y[9],3,3);
{i} Draw.Circle(i&'',X,Y,.2,1,0);
parameter a:=Geom.Intersect(X,Y,8,4,1,2);
parameter b:=Geom.Intersect(X,Y,5,2,1,9);
Write('Line segment (8,4) does%s intersect with line segment (1,2)\n'

, if(a,'',' not'));
Write('(Red line segment (5,2) does%s intersect with red line segment

(1,10)\n', if(b,'',' not'));
end� �

The output as follows:

140

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawIntersect
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawIntersect
https://matmod.ch/lpl/HTML/xDrawIntersect.html

1

2

3

4

5

6

7

8

9

10

Figure 21: Output

141

91 Drawing Lines (xDrawLine)
—- Run LPL Code , HTML Document –
Problem:

Listing 92: The Complete Model implemented in LPL [2]� �
model xDrawLine " Drawing L i n e s ";

−−Draw . S c a l e (3 , 3) ;
−−Draw . S c a l e (3 , −3) ;
Draw.Line('line',0,0,200,200);
Draw.CLine('curve',0,20,180,200,-40);

/ ∗ Draw . CArrow (' a n o t h e r c u r v e ' , 0 , 4 0 , 1 6 0 , 2 0 0 , − 4 0 , 0 , 3) ;
Draw . Line (2 0 , 0 , 2 0 0 , 1 8 0 , 4 , 5) ;
Draw . Line (' t e x t f o l l o w s l i n e ' , 4 0 , 0 , 2 0 0 , 1 6 0 , 4 , 5 , − 2 , − . 3) ;
Draw . DefFont (' c u r s ' , ' c u r s i v e ' , 3 0 , 3 , 2) ;
Draw . Line (' # c u r s ' , ' r e d ' , 6 0 , 0 , 2 0 0 , 1 4 0 , 2 , 2 , − 2 , 0 . 2) ;
Draw . DefLine (' dash ' , 8 , 3 , 0) ;
Draw . Line (' # dash ' , 8 0 , 0 , 2 0 0 , 1 2 0) ;
Draw . C i r c l e (0 , 0 , 2 , 5) ;
Draw . Text (' (0 , 0) ' , 2 , 0) ;
Draw . C i r c l e (2 0 0 , 2 0 0 , 2) ;

∗ /
end� �
Output as follows:

line

curve

Figure 22: Output

142

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawLine
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawLine
https://matmod.ch/lpl/HTML/xDrawLine.html

92 Draw a path (xDrawPath)
—- Run LPL Code , HTML Document –
Problem:

Listing 93: The Complete Model implemented in LPL [2]� �
model xDrawPath " Draw a p a t h ";

parameter white:=1; grey:=2;
Draw.DefGrad('rGr',-2,-2,-2,-2,.7,.7, 0,white,1,grey);
/ / Draw . D e f F i l l (' p a t h ' , 2 , 2) ;
Draw.Rect(0,0,320,320,0,-1);
Draw.Path('M',10,10);
Draw.Path('V',20); Draw.Path('H',20);
Draw.Path('C',20,20,100,10,230,230);
Draw.Path('S',20,150,100,10);
Draw.Path('#rGr','Z');
Draw.Circle(240,280,5,1,0,3);

end� �
Output as follows:

Figure 23: Output

143

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPath
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPath
https://matmod.ch/lpl/HTML/xDrawPath.html

93 Draw a pattern (xDrawPattern)
—- Run LPL Code , HTML Document –
Problem:

Listing 94: The Complete Model implemented in LPL [2]� �
model xDrawPattern " Draw a p a t t e r n ";

Draw.Scale(3,3);
set i,j := [1..200];
integer parameter c{i,j} := (i^2+2*j)%32+128;
−− i n t e g e r p a r a m e t e r c { i , j } := ((i / 1 0) ^2+2∗ j) %32+64;
−− i n t e g e r p a r a m e t e r c { i , j } := (S q r t (10∗ i ∗ j)) %32+128;
{i,j} Draw.Rect(i,j,1,1,c);

end� �
Output as follows:

Figure 24: Output

144

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPattern
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPattern
https://matmod.ch/lpl/HTML/xDrawPattern.html

94 Load Picture from File (xDrawPict)
—- Run LPL Code , HTML Document –
Problem:

Listing 95: The Complete Model implemented in LPL [2]� �
model xDrawPict " Load P i c t u r e from F i l e ";

Draw.Scale(1,1,0,0,700,500);
Draw.Picture('xDrawPict.jpg');

end� �
Output as follows:

Figure 25: Output

145

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPict
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPict
https://matmod.ch/lpl/HTML/xDrawPict.html

95 Some drawing functions (xDrawPict1)
—- Run LPL Code , HTML Document –
Problem:

Listing 96: The Complete Model implemented in LPL [2]� �
model xDrawPict1 "Some drawing f u n c t i o n s ";

Draw.Picture('xDrawPict1.jpg',0,0,700,500); −− l o a d and draw a
background

Draw.Rect(1,1,100,200,3); −−draw a r e c t a n g l e
Draw.Line(200,200,300,300,5,20); −−draw an l i n e
Draw.Ellipse(100,200,100,150,7,10,10); −−draw an e l l i p s e
Draw.DefFont('Tahoma',25); −− s e t s t h e f o n t and i t s h e i g h t
Draw.Text('Here is text',1,1,12); −−w r i t e a t e x t t o t h e p i c t u r e
Draw.Text('Another text',1,300,14,60,90); −−w r i t e a t e x t t o

t h e p i c t u r e
Draw.Text('A Spline curve',330,130,12,25,-32); −−w r i t e a t e x t t o t h e

p i c t u r e
Draw.CArrow(110,280,480,265,400); −−draw a s p l i n e c u r v e
−−Draw . Save (' s ave . j p g ') ; −−s ave t h e p i c t u r e as j p g

end� �
Output as follows:

Here is text

Another text

A Spline curve

Figure 26: Output

146

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPict1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPict1
https://matmod.ch/lpl/HTML/xDrawPict1.html

96 Puzzle 64=65 (xDrawPuzzle)
—- Run LPL Code , HTML Document –
Problem: Look at the graph in Figure 27. Can you see the error?

Figure 27: 64 ?
= 65

Modeling Steps

It is very easy to see that the red and green “triangles” on the right figure are not really triangles (if you
are not convinced then set n:=5 in the model and run again). A quick calculation also shows that they
cannot be triangles. The proportion of the height and the length of these triangles is 3∕8. At the position
5 at the length, the height of this “triangle” is 2. But we know that 3∕8 ≠ 2∕5. Hence, these forms are
not triangles.

These two graphs are intrinsicly linked to the Fibonacci numbers, for example, within the graph the
three numbers 5, 8, and 13 are the consecutive Fibonacci numbers 𝐹5, 𝐹6, and 𝐹7. These numbers are
defined as follows:

𝐹1 = 1 , 𝐹2 = 1 , 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 , with 𝑛 ≥ 2

The Fibonacci numbers have many interesting properties, one of them is

𝐹𝑛+1 ⋅ 𝐹𝑛−1 − 𝐹 2
𝑛 = (−1)𝑛 , with 𝑛 ≥ 1

Proof:
1. The property is true for 𝑛 = 1, since 1 ⋅ 0 − 12 = (−1)1.
2. Supposing the property is valid for 𝑛, then it is valid for 𝑛 + 1, namely we substitute 𝐹𝑛−1 with

𝐹𝑛+1 − 𝐹𝑛 in the property and we get:
𝐹 2
𝑛+1 − 𝐹𝑛+1𝐹𝑛 − 𝐹 2

𝑛 = (−1)𝑛

By multiplying with −1 and transforming it we finally get:
𝐹𝑛+2 ⋅ 𝐹𝑛 − 𝐹 2

𝑛+1 = (−1)𝑛+1

147

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPuzzle
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawPuzzle
https://matmod.ch/lpl/HTML/xDrawPuzzle.html

That proves the property.
3. In particular, for 𝑛 = 6 we have: 13 ⋅ 5 − 82 = (−1)6 (see Figure 27).
An LPL model that draws this puzzle is given below. Open it and try different values for n (line 4 in

the code).
Listing 97: The Complete Model implemented in LPL [2]� �

model xDrawPuzzle " P u z z l e 64=65 ";
set k:=1..20;
parameter F{k}:=if(k=1,1,k=2,1,F[k-1]+F[k-2]); / / F i b o n a c c i numbers
n:=6; −− f o r d i f f e r e n t s i z e s : t r y n :=5 ,6 ,7 and 8
x:=2; y:=2;

set i:=1..F[n+1]+10;
Draw.Scale(25,25);
Draw.DefFont('Verdana',40);
{i}Draw.Line(1,i,#i,i,2);
{i}Draw.Line(i,1,i,#i,2);
Draw.Path('M',x,y,x+F[n-1],y,x+F[n-2],y+F[n-1],x,y+F[n-1]);
Draw.Path('Z',2,0,3,.5);

Draw.Path('M',x+F[n-1],y,x+F[n],y,x+F[n],y+F[n-1],x+F[n-2],y+F[n-1]);
Draw.Path('Z',5,0,3,.5);

Draw.Path('M',x,y+F[n-1],x+F[n],y+F[n-1],x+F[n],y+F[n]);
Draw.Path('Z',3,0,3,.5);

Draw.Path('M',x,y+F[n-1],x+F[n],y+F[n],x,y+F[n]);
Draw.Path('Z',4,0,3,.5);

Draw.Text(F[n]&' x '&F[n]&' = '&F[n]^2,x+F[n]+2,4);
x:=x+F[n]+4; y:=y+4;
Draw.Path('M',x,y,x+F[n-1],y,x+F[n-2],y+F[n-1],x,y+F[n-1]);
Draw.Path('Z',2,0,3,.5);

Draw.Path('M',x+F[n-3],y+F[n],x+F[n-1],y+F[n],x+F[n-1],y+F[n+1],x,y+F
[n+1]);

Draw.Path('Z',5,0,3,.5);
Draw.Path('M',x+F[n-1],y,x+F[n-1],y+F[n],x+F[n-3],y+F[n],x+F[n-2],y+F

[n-1]);
Draw.Path('Z',3,0,3,.5);

Draw.Path('M',x,y+F[n-1],x+F[n-2],y+F[n-1],x+F[n-3],y+F[n],x,y+F[n
+1]);

Draw.Path('Z',4,0,3,.5);
Draw.Text(F[n-1]&' x '&F[n+1]&' = '&F[n-1]*F[n+1],2,2+F[n+1]);

end� �
This puzzle shows an important aspect in the modeling process: How can we discover generalizations

of a result! Try to construct the puzzle for 𝑛 = 7: we get
21 ⋅ 8 − 132 = (−1)7 (168 = 169 − 1)

The corresponding figure can be constructed and is shown in Figure 28.
In the puzzle with 𝑛 = 5 (Figure 29), we see immediately, that the two forms are not congruent.

148

Figure 28: 169 ?
= 168

5 x 5 = 25

3 x 8 = 24

Figure 29: 25 ?
= 24

149

97 Draw rectangles (xDrawRect)
—- Run LPL Code , HTML Document –
Problem:

Listing 98: The Complete Model implemented in LPL [2]� �
model xDrawRect " Draw r e c t a n g l e s ";

−−Draw . S c a l e (3 , 3) ;
Draw.Scale(3,-3);
Draw.Rect('a',100,100,30,40,2,3,5);
Draw.Rect('rect',100,70,20,20,1,0);
Draw.Rect('12.0',60,0,30,20,2,3,4,0.2,0.2);
Draw.Rect('14.0',95,0,40,40,2,3,4,-2,-2,10,10);
Draw.Rect(0,0,150,150,-1,3,2); / / t h e l a r g e r e c t
parameter Pi:=3.14159; x1:=100; y1:=45;
an:=Arctan(y1/x1)*180/Pi;
r:=Sqrt(x1^2+y1^2);
x2:=r*Cos((an+50)*Pi/180); y2:=r*Sin((an+50)*Pi/180);

Draw.Text('(x1,y1)',x1+3,y1+2);
Draw.Text('(x2,y2)',x2-21,y2-3);
Draw.DefTrans('tr','t',x1,y1);
Draw.DefTrans('ro','r',50);
Draw.Rect('#ro tr','hu',0,0,20,30,1,0);
Draw.Arc('α=50º',0,0,r,an,an+50,3,10);
Draw.Circle(x1,y1,2);
Draw.Line(0,0,x1,y1);
Draw.Circle(x2,y2,2);
Draw.Line(0,0,x2,y2);
parameter x:=50; y:=60;
Draw.DefTrans('ro1','r',50,x,y);
Draw.Rect('#ro1','hi',x,y,20,30,-1,0);
Draw.Circle(x,y,2);
Draw.Text('(x,y)',x+2,y-2);

end� �
The output as follows:

150

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawRect
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawRect
https://matmod.ch/lpl/HTML/xDrawRect.html

a

rect

12.0

14.0

(x1,y1)

(x2,y2)

hu

α=50º

hi

(x,y)

Figure 30: Output

151

98 Draw.Scale Function (xDrawScale)
—- Run LPL Code , HTML Document –
Problem: The first Scale instruction (outcommanded) scales the graph automatically, the second does it
manually: the size of the graphic is 240 × 240 and the left/top of the graphic is (-120,-120) and (2,-2) are
the scaling factors. If the y-scaling factor is negative then the graphic drawn upside down.

Listing 99: The Complete Model implemented in LPL [2]� �
model xDrawScale " Draw . S c a l e F u n c t i o n ";

−−Draw . S c a l e (2 , 2) ;
Draw.Scale(2,-2,-120,-120,240,240);
Draw.Rect(-100,-100,200,200);
Draw.Circle(-100,-100,2,3);
Draw.Circle(100,100,2,4);
Draw.Circle(-100,100,2,3);
Draw.Circle(100,-100,2,4);
Draw.Text('(-100,-100)',-115,-110);
Draw.Text('(100,100)',85,110);

end� �
Output as follows:

(-100,-100)

(100,100)

Figure 31: Output

152

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawScale
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawScale
https://matmod.ch/lpl/HTML/xDrawScale.html

99 Drawing Text (xDrawText)
—- Run LPL Code , HTML Document –
Problem: Text fonts in different shapes and sizes.

Listing 100: The Complete Model implemented in LPL [2]� �
model xDrawText " Drawing Text ";

−−Draw . S c a l e (3 , 3) ;
Draw.Scale(3,3,0,-10,200,150);
parameter FontSize:=30;
−−Draw . DefFont (' s e r i f ' , F o n t S i z e) ; / / d e f a u l t
Draw.DefFont('seri','serif',FontSize);
Draw.DefFont('sans','sans-serif',FontSize);
Draw.DefFont('curs','cursive',FontSize);
Draw.DefFont('fant','fantasy',FontSize);
Draw.DefFont('mono','monospace',FontSize);
Draw.Text('Hello World! default',20,0);
Draw.Text('#seri','Hello World! serif',20,20);
Draw.Text('#sans','Hello World! sans-serif',20,40);
Draw.Text('#curs','Hello World! cursive',20,60);
Draw.Text('#fant','Hello World! fantasy',20,80);
Draw.Text('#mono','Hello World! monospace',20,100);
Draw.DefFill('fill',3,4,3,0.2,0.5);
Draw.Text('#fant fill','Hello World!!!',20,130,100);
Draw.Circle(0,0,1);
Draw.Text('(0,0)',2,0);

end� �
Hello World! default

Hello World! serif

Hello World! sans-serif

Hello World! cursive

Hello World! fantasy

Hello World! monospace

Hello World!!!

(0,0)

Figure 32: Output

153

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawText
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawText
https://matmod.ch/lpl/HTML/xDrawText.html

100 Drawing a TextPath (xDrawTextPath)
—- Run LPL Code , HTML Document –
Problem:

Listing 101: The Complete Model implemented in LPL [2]� �
model xDrawTextPath " Drawing a T e x t P a t h ";

Draw.Scale(2,2,0,0,150,210);
−− t h i s d e f i n e s a s i n g l e p a t h wi th i d ' aa '
Draw.Path('aa','M',50,50);
Draw.Path('aa','A',30,30,0,0,1,130,50);
Draw.Path('aa','L',130,200);
−− t h i s u s e s t h e p a t h f o r t h e t e x t
Draw.Text('#aa','Text on a round corner, and more text. hello!'

,0,0,28);
end� �
Output as follows:

Te

xt
 on a round

 co
rn

e
r,

a
n
d

 m
o
re

Figure 33: Output

154

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawTextPath
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawTextPath
https://matmod.ch/lpl/HTML/xDrawTextPath.html

101 Draw a Text on a Path (xDrawTPath)
—- Run LPL Code , HTML Document –
Problem:

Listing 102: The Complete Model implemented in LPL [2]� �
model xDrawTPath " Draw a Text on a Pa th ";

Draw.Scale(1,1,-5,145,360,210);
Draw.Rect(0,150,350,200,1,0);
Draw.Path('mytext','M 20,255 L 100,255 A 70 100 0 0 0 180,255 A 70

100 0 0 1 260,255 L 370,255 y',-1,3,1);
Draw.Text('#mytext','this is a longer text on a path with downs and

ups',100,100);
end� �
Output as follows:

this is a longer text on a path
 w

ith downs a

Figure 34: Output

155

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawTPath
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawTPath
https://matmod.ch/lpl/HTML/xDrawTPath.html

102 Show transformations (xDrawTrans1)
—- Run LPL Code , HTML Document –
Problem:

Listing 103: The Complete Model implemented in LPL [2]� �
model xDrawTrans1 "Show t r a n s f o r m a t i o n s ";

Draw.Scale(2,2,0,0,130,100);
−−Draw . S c a l e (2 , 2) ; / / does n o t a good j o b !
for{i in 1..10} do
Draw.DefTrans('id'&i,'t',10+3*i,10);
Draw.DefTrans('id'&i,'r',10*i,40,40);
Draw.Rect('#id'&i,10,10,50,50,i+3,i+2,3,2,2,.1,.1);

end;
−−Draw . DefTrans (' i d 1 ' , ' r ' , 4 5 , 1 3 0 , 3 0) ;
−−Draw . Rec t (' # i d 1 ' , 1 2 0 , 2 0 , 5 0 , 5 0) ;
−−Draw . Rec t (1 0 0 , 1 0 0 , 9 0 , 9 0) ;

end� �
The output is as follows:

Figure 35: Output

156

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawTrans1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawTrans1
https://matmod.ch/lpl/HTML/xDrawTrans1.html

103 Draw Penrose Triangle (xDrawxPenrose)
—- Run LPL Code , HTML Document –
Problem:

Listing 104: The Complete Model implemented in LPL [2]� �
model xDrawPenrose " Draw P e n r o s e T r i a n g l e ";

parameter a:=300; b:=40; c:=Sqrt(1/3)*b;
d:= a-3*c; e:=Sqrt(3/4)*(d+c)-2*b; f:=1/2*a-3*c;
bColor:=2; fColor:=Rgb(2,30,40); tColor:=1;

Draw.Scale(1,1,0,10,500,500);
Draw.Rect(0,0,700,700,bColor);
Draw.DefGrad('nr1',3,0,0,1,1,-2,0,fColor,1,tColor);
Draw.DefTrans('trans1','r',120,100+f+2*c,400-e-4*b);
Draw.DefTrans('trans2','r',240,100+a+c,400-b);
Draw.Path('M',100,400); Draw.Path('l',a,0); Draw.Path('l',c,-b);
Draw.Path('l',-c-d,0); Draw.Path('l',f,-e); Draw.Path('l',-c,-b);
Draw.Path('#nr1','Z');

Draw.Path('M',100+f+2*c,400-e-4*b); Draw.Path('l',a,0); Draw.Path('l'
,c,-b);

Draw.Path('l',-c-d,0); Draw.Path('l',f,-e); Draw.Path('l',-c,-b);
Draw.Path('#nr1 trans1','Z');

Draw.Path('M',100+a+c,400-b); Draw.Path('l',a,0); Draw.Path('l',c,-b)
;

Draw.Path('l',-c-d,0); Draw.Path('l',f,-e); Draw.Path('l',-c,-b);
Draw.Path('#nr1 trans2','Z');

end� �
The output is as follows:

Figure 36: Penrose Triangle

157

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawxPenrose
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawxPenrose
https://matmod.ch/lpl/HTML/xDrawxPenrose.html

104 Draw Sierpinski Triangles (xDrawxSierpinski)
—- Run LPL Code , HTML Document –
Problem:

Listing 105: The Complete Model implemented in LPL [2]� �
model xDrawSierpinski " Draw S i e r p i n s k i T r i a n g l e s ";

parameter s:=400; t:= 5; c; f:=3^Ceil(Log(s/t)/Log(2));
set i,j:=1..f;
parameter x{i}; y{i}; xx{j}; yy{j};;
x[1] := 1; y[1] := 1;
while s>t do
s := s/2; c := 1;
{i|x}(xx[c]:=x, yy[c]:=y, xx[c+1]:=x+s, yy[c+1]:=y,

xx[c+2]:=x+s/2, yy[c+2]:=y+Sqrt(3/4*s^2), c:=c+3);
{j}(x[j]:=xx, y[j]:=yy);

end
Draw.DefFill('pa',1,0,-2,0.5);
{i|x}(Draw.Path('M',x,y,x+s,y,x+s/2,y+Sqrt(3/4*s^2),x,y),Draw.Path('#

pa','Z'));
end� �
The output is as follows:

Figure 37: Sierpinski Triangle

158

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawxSierpinski
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawxSierpinski
https://matmod.ch/lpl/HTML/xDrawxSierpinski.html

105 Draw a colored spiral (xDrawxSpiral)
—- Run LPL Code , HTML Document –
Problem: Draw a rectagle filled with a linear gradient from fromColor to toColor and from top
left (0, 0) to bottom right (1, 1). Then repeat this step by slidely rotating and decreasing the size of the
rectangle.

Listing 106: The Complete Model implemented in LPL [2]� �
model xDrawSpiral " Draw a c o l o r e d s p i r a l ";

set r := [1..100] " r e p a e t ";
parameter size:=400; a:=4; rad:=a/180*3.14159265; c; d; s;
parameter fromColor:=2; toColor:=5;
Draw.DefGrad('grad0',3, 0,0,1,1, -2, 0,fromColor,1,toColor);
Draw.Rect('#grad0',0,0,size,size);
s:=size;
{r}(Draw.DefTrans('rot','r',a,size/2,size/2),

Draw.DefGrad('grad'&r,3, 0,0,1,1, -2, 0,fromColor,1,toColor),
c:=Arctan(rad)*s/(1+Arctan(rad)), d:= s-c, s:=Sqrt(c^2+d^2),
Draw.Rect('#rot grad'&r,(size-s)/2,(size-s)/2,s,s,-2,0));

end� �
The output is as follows:

Figure 38: Colored Spiral

159

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawxSpiral
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawxSpiral
https://matmod.ch/lpl/HTML/xDrawxSpiral.html

106 A XY-plot (xDrawXY)
—- Run LPL Code , HTML Document –
Problem:

Listing 107: The Complete Model implemented in LPL [2]� �
model xDrawXY " A XY− p l o t ";

Draw.Scale(3,3);
Draw.Rect(0,0,155,155,2);
Draw.Line(5,5,5,150,0);
Draw.Line(5,5,150,5,0);
Draw.Line(5,75,75,5,0);
Draw.Line('ff',5,150,50,5,0);
Draw.Text('A',1,4);
Draw.Text('B',1,75);
Draw.Text('C',40,42);
Draw.Text('D',51,4);
Draw.Text('y',1,150);
Draw.Text('x',145,4);
Draw.Circle(38.5,41.5,1.5);
Draw.Text('6x+2y = 300',27,100,-75,16);
Draw.Text('5x+5y = 350',50,35,15,0,0,1,-2,-2,-45,-45); / / x , y , h , c1 ,

c2 , w, o1 , o2 , a , r
end� �
Output as follows:

ff

A

B

C

D

y

x

6x+2y = 300

5x
+
5y

 =
 3

50

Figure 39: Output

160

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawXY
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawXY
https://matmod.ch/lpl/HTML/xDrawXY.html

107 A XY-Function-plot (xDrawXY1)
—- Run LPL Code , HTML Document –
Problem:

Listing 108: The Complete Model implemented in LPL [2]� �
model CHAIN " A XY−Func t ion − p l o t ";

parameter n := 500;
set i := 0..n " number o f i n t e r v a l s f o r t h e d i s c r e t i z a t i o n ";
parameter
xa := -3.14 " l e f t x c o o r d i n a t e ";
xb := 6.28 " r i g h t x c o o r d i n a t e ";
dx := (xb-xa)/n " i n t e r v a l ";
x{i} := xa+dx*i " x−c o o r s ";
y{i} := Sin(x);
z{i} := Cos(x);
w{i} := Sin(x^2);

Draw.DefFont('Verdana',8);
Draw.XY(x,y,z,w,1);

end� �
The output is as follows:

-3.1

-1

-2.2

-0.8

-1.3

-0.6

-0.3

-0.4

0.6

-0.2

1.6

0

2.5

0.2

3.5

0.4

4.4

0.6

5.3

0.8

6.3

1

y

zw

Figure 40: XY-Function-Graph

161

https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawXY1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/xDrawXY1
https://matmod.ch/lpl/HTML/xDrawXY1.html

References
[1] MatMod. Homepage for Learning Mathematical Modeling : https://matmod.ch.
[2] Hürlimann T. Reference Manual for the LPL Modeling Language, most recent version. https:

//matmod.ch/lpl/doc/manual.pdf.

162

https://matmod.ch
https://matmod.ch/lpl/doc/manual.pdf
https://matmod.ch/lpl/doc/manual.pdf

	A Simple Production Model (tutor01)
	Names and Comments (tutor02)
	Using Indices I (tutor03)
	Using Indices II (tutor04)
	Using Indices III (tutor05)
	Data Include Files (tutor06)
	Reading text files (tutor07)
	Reading data from Excel I (tutor07a)
	Reading data from Excel II (tutor07a1)
	Reading data from Database (tutor07b)
	Read consecutive blocks in Text files (tutor07d)
	Writing to text files (output locally only) (tutor08)
	Writing data to Excel (locally only) (tutor08a1)
	Writing to databases (output locally only) (tutor08b)
	Creating a Report (report locally only) (tutor08c)
	Writing With Formatted Masks (tutor08d)
	Write-Format Examples (tutor08e)
	Submodels (output locally only) (tutor09)
	Sparse Tables (tutor10)
	Predefined Functions (tutor11)
	Index Operators (tutor12)
	Expression Evaluation (tutor13)
	Goal Programming (tutor14)
	Loop Programming (tutor15)
	Logical Constraints (tutor16)
	Some Basic Expressions / Writes (learn01)
	Basic Indexed Expressions/Tables (learn01a)
	The Addm function (learn01b)
	Some Math and Boolean Functions (learn02)
	Logical Operators (learn02a)
	The within and in Operators (learn03)
	Some String Compare Operations (learn04)
	Index options, and wrap around function (learn05)
	Sort function (learn06)
	Date/Time Type (learn07)
	Documenting Models (learn08)
	Call Submodel within Solver (Gurobi) (learn10)
	Sparsity Check (learn11)
	Reading Relations (learn12)
	A Small Data Cube I (learn13)
	A Small Data Cube II (learn13a)
	Multiple bounds of variables (learn14)
	Submodels and Encapsulation (learn15)
	Again, some non-trivial relations (learn16)
	Expressions and Constraints (learn17)
	GetValue Function (learn20)
	create a SQL script, test sparcity (locally only) (learn21)
	GetAttr Function (two parameters) (learn22)
	GetAttr Function (one parameter) (learn22a)
	GetName Function (learn23)
	GetParams Function (learn24)
	Split Function (learn25)
	String Functions (learn26)
	String Operations and Format (learn26a)
	Functions NextFocus, NextPosition (learn27)
	Multiple Snapshots (learn29)
	Show Graph.Component (learn30)
	Show Graph.Mincut function (learn31)
	Show Graph.MStree (Minimal Spanning Tree) (learn32)
	Read Multiple Snapshots (learn33)
	Freeze function (learn34)
	function En(), El() (learn35)
	Show Graph.Bfs (learn36)
	Show Graph.SPath (shortest path) (learn37)
	Sl function (goal programming) (learn39)
	Parameterized Calling of Submodels (learn40)
	A Model with Parameters I (learn41)
	A Model with Parameters II (learn42)
	Pivot Table (learn43)
	Colored Report (learn44)
	Circular Time Lag Operator (learn45)
	Function xP (learn46)
	A logical constraint (learn47)
	Run some code inside a constraint (learn48)
	Queue and Map data structure (learn49)
	Greatest Common Divider (learn51)
	Topological Sorting (learn52)
	Reading various data sets (learn53)
	How to call a OS function (learn54)
	Draw Lines/Opacity (xDrawAll)
	Use arc path (xDrawArcPath)
	Drawing Circles (xDrawCircle)
	A Quadratic Constraint (xDrawCircle1)
	Show Color Numbers in LPL (xDrawColors)
	Draw Filters (xDrawFilters)
	Show radial gradient (xDrawGrad0)
	Show linear gardient (xDrawGrad1)
	Show figures with gradient (xDrawGrad2)
	Check Points inside a Polygon (xDrawInside)
	Check Two Segments intersect (xDrawIntersect)
	Drawing Lines (xDrawLine)
	Draw a path (xDrawPath)
	Draw a pattern (xDrawPattern)
	Load Picture from File (xDrawPict)
	Some drawing functions (xDrawPict1)
	Puzzle 64=65 (xDrawPuzzle)
	Draw rectangles (xDrawRect)
	Draw.Scale Function (xDrawScale)
	Drawing Text (xDrawText)
	Drawing a TextPath (xDrawTextPath)
	Draw a Text on a Path (xDrawTPath)
	Show transformations (xDrawTrans1)
	Draw Penrose Triangle (xDrawxPenrose)
	Draw Sierpinski Triangles (xDrawxSierpinski)
	 Draw a colored spiral (xDrawxSpiral)
	 A XY-plot (xDrawXY)
	 A XY-Function-plot (xDrawXY1)

