
Preprint 0 (1998) ?–? 1

Modeling Languages: A new Paradigm of

Programming ∗

Tony Hürlimann a

a Institute of Informatics, University of Fribourg, Switzerland

E-mail: tony.huerlimann@unifr.ch , http://www-iiuf.unifr.ch/tcs/lpl

This paper presents a new type of programming language (also called modeling

language) which allows a modeler to combine declarative and algorithmic knowl-

edge, that is, mathematical-logical constraints on the one hand and an instruction

sequence defining an algorithm on the other hand. The approach is new in the sense

that it strictly separates syntactically and sematically the declarative from the algo-

rithmic part. Advantages of doing so are presented. Examples illustrate the flavour

of such a language.

Keywords: Modeling Language, Index-set, Hierarchical Structure

1. Introduction

We use programming languages to formulate problems in order to deal with
them by computers. At the same time, we want these languages to be readable
for human beings. In fact, the emergence of computers has created a system-
atic way in which problems are formulated as computations. We now frequently
make use of this mould even if computers are not involved. It is true that prob-
lem formulation as computation has a long tradition. The ancient Babylonians
(19th–6th century B.C.), who had the most advanced mathematics in the Middle
East, formulated all their mathematical problems as computations. They easily
handled quadratic and even some cubic equations. They knew many primitive
Pythagorean triples. They mastered the calculation of the volume of the trun-
cated pyramid and many more impressive computations [7,28]. Arithmetics was
highly developed to ensure their calculations for architectural and astronomi-
∗ This research is supported by the Federal National Fond of Switzerland and financed by the

project no. 1217-45922.95.

2 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

cal purposes. But we cannot find a single instance of what we nowadays call a
demonstration using symbolic variables and constraints. Only the process of the
calculation – today we may say the procedure or the algorithm – was described.
In this sense, the Babylonian mathematicians were in fact computer scientists.
To illustrate how they did mathematics, one can consult the examples in [21].

Traditionally, programming languages are classified into three paradigms:
imperative, functional, and logic programming [23,27].

The imperative – sometimes called procedural – programming paradigm is
closely related to the physical way of how (the von Neumann) computer works:
Given a set of memory locations, a program is a sequence of well defined instruc-
tions on retrieving, storing and transforming the content of these locations. At
each moment, the state of the computation can be represented by the momentary
content of the memory locations (its memory-variables), instruction pointer and
other register contents. At each step of the computation this state changes until
the desired result (the goal state) is obtained, where the computation stops. The
explicit notation of a sequential execution, the use of memory-variables (symbolic
names) representing memory locations, and the use of assignment to change the
values of variables are the characteristic building block of each imperative lan-
guage. Object-oriented programming, where computation proceeds by changing
the local state of objects, can be viewed as an extension – or the ultimate conse-
quence – of imperative programming. Object-oriented programming is in a sense
opposite to functional programming, where no such states exist.

The functional paradigm of computation is based on the evaluation of func-
tions. Every program (i.e. computation) can be viewed as a function which
translates an input into a unique output. Hence, a program can be represented
by the functionX

f−→ Y , X being the domain of input, Y being the output, and f
being the computation. A distinction is made between function definition, which
describes how a function is to be computed, and function application, which is a
call to a defined function. Since every value can be expressed as a function, there
is no need to use explicitly variables, i.e. symbolic names for memory locations,
nor do we need the assignment operation. Loops in the imperative paradigm
are replaced by recursion. Furthermore, functions are first-class values, that is,
they must be viewed as values themselves, which can be computed by other
functions [23]. The computational model of functional programming is based on
the λ–calculus invented by Church A. (1936) as a mathematical formalism for

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 3

expressing the concept of a computation; this was at the same time as Turing
invented the Turing machine for the same purpose. One can show that the two
formalism are equivalent in the strict sense that both can compute the same set
of functions – called the computable functions. We call a programming language
Turing complete, if it can compute all computable functions. With respect to
functional programming we have the important result that: “A programming
language is Turing complete if it has integer values, arithmetic functions on these
values, and if it has a mechanism for defining new functions using existing func-
tions, selection, and recursion.” [23, p. 12].

The paradigm of logic programming emerged in the 1960s, when programs
have been written that construct proofs of mathematical theorems using the ax-
ioms of logic. This led to the insight that a proof can be seen as a kind of
computation. But it was realised soon that also the reverse is true: computa-
tion can also be viewed as a kind of proof. This inspired the development of
the programming language Prolog. In Prolog, a program consists of a set of
(Horn)-rules together with at least one goal. Using the backtracking algorithm
which consists of resolution and unification, the goal is derived from the rules. A
logic programming language can be defined as a “notational system for writing
logical statements together with specified algorithms for implementing inference
rules.” [23, p. 426]. The unification-resolution algorithm is quite limited and has
been replaced by various constraint solving mechanisms in the constraint logic
programming, a modern extension of the logic programming paradigm [20].

All three programming paradigms concentrate on problem representation as
a computation. The computation on how to solve the problem is the represen-
tation. We may call a notational system, that represent a problem by writing
down its computation to find a solution, an algorithmic language. In this sense,
all presented programming paradigms consist of algorithmic languages.

Definition: An algorithmic language describes (explicitly or implicitly) the pro-

cess (the computation) of solving a problem, that is, how a problem can be pro-

cessed using a machine. The computation consists of a sequence of instructions

which can be executed in a finite time by a Turing machine. The information

of a problem which is captured by an algorithmic language is called algorithmic

knowledge of the problem.

Algorithmic knowledge to describe a problem is so common in our everyday life

4 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

that one may ask whether the human brain is “predisposed” to preferably look
at a problem in describing its solution recipe (computation). Are we in fact
predominantly using “algorithmic thinking”? (see also [22]).

2. Algorithmic Versus Declarative Knowledge

Describing a problem by writing down its computation for solving the prob-
lem is only one way of representing it. It is (only) the algorithmic knowledge
of the problem solution that is described, it is the Babylonian way of problem
representation. There exists at least one other way to capture knowledge about
a problem; it is the way to define what the problem is, rather than saying how
to solve it. How can we say what the problem is? By defining the properties
of the problem! Mathematically, the properties can be described as a feasible
space which is a subset of a well-defined state space. Let X be a continuous or
discrete (or mixed) state space (IRm ∪ INn) and let x be an arbitrary element
within X (x ∈ X), then any relation R : X → {false, true} defines a subset Y of
X. This is often written as Y = {x ∈ X | R(x)}. Mathematical and logical for-
mula can be used to specify the relation R. These formula are called constraints.
The unknown quantities x in {x | R(x)} are called variables. The expression
Y = {x ∈ X | R(x)} is also called a mathematical model for the problem at hand.
A notational system that represents a problem by writing down its properties
using a state space is called a declarative language.

Definition: An declarative language describes the problem as a set of properties

that can be expressed as a subset of a given state space. This space can be finite

or infinite, countable or non-countable. The information of a problem which is

captured by a declarative language is called declarative knowledge of the problem.

The algorithmic way is a precise sequence of instructions (a recipe) of finding the
solution to a given problem. We can be sure that the sequence will terminate
and we can even – for most algorithms– calculate a upper bound of its execution
time – which is called its complexity. The proof is another computation which
shows that the first computation is correct.

The declarative way, on the other hand, does not give any indication on how
the solution can be found. It only states what the problem is. (That is not much
in contrast to an algorithmic statement of the problem, which can even be proven
to be correct.) Of course, there exists a trivial algorithm to solve a declaratively

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 5

stated problem, which is to enumerate the state space and to check whether a
given x ∈ X violates the constraint R. The algorithm breaks down, however,
whenever the state space is infinite. But even if the state space is finite, it is
– for most nontrivial problems – so large that a full enumeration is practically
impossible.

In practice, however, we are not so badly off. There exists problem classes,
even with an infinite state space, which can be solved using general methods. An
example is linear programming, another is recursive definitions (see below).

Algorithmic and declarative representations are two fundamentally different
kinds of modeling and representing knowledge. Declarative knowledge answers
the question “what is?”, whereas algorithmic knowledge asks “how to?” [8] [63,
p. 20]. An algorithm gives an exact recipe of how to solve a problem. A mathe-
matical model, i.e. its declarative representation, on the other hand, defines the
problem as a subspace of the state space, as explained above. No algorithm is
given to find all or a single element of the feasible subspace.

The functional and logic programming paradigm are sometimes called
declarative. The following example will make the difference clear between truly
declarative, in the defined sense above, and functional, respectively logic, decla-
ration. In mathematics, the square root can be defined (declaratively) as:

{
√
x = y | y ≥ 0, y2 = x}

One can translate this definition directly into a Prolog program as follows:

Sqr(X,Y) :- X = Y*Y.

Now the query

? :- Sqr(X,7).

will eventually return the answer {X = 49}, since it is easy to multiply Y ∗ Y
(7 ∗ 7) and to bind X to 49. If however the query

? :- Sqr(49,Y).

is made then the interpreter may not return a result, because it does not know
what the inverse operation of squaring is. In a constraint logic language, the
interpreter may or may not return a result, depending on whether the square
root is implemented as an inverse of the square operation. This is but a simple

6 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

example, but it shows an essential point: the logic program is declarative only
in one direction, but not in the other, except when implementing explicitly the
inverse into the system. This situation is similar in functional programming. The
function (in Scheme)

(define (Sqr y)

(* y y))

solves the problem: “given y find (Sqr y)”. The inverse problem, however,
which is also part of the mathematical definition, would be: “given the body
(* y y), which evaluates to a single value, find the value of y”. This second
problem cannot be solved using the functional definition. To find the square
root, one needs an entirely different algorithm (e.g. Newton’s approximation

formula: xn =
xn−1+

a
xn−1

2). In a truly declarative language (see below), such as
LPL [16], one could write:

VARIABLE x; y; CONSTRAINT R: y*y = x; y=7;

or

VARIABLE x; y; CONSTRAINT R: y*y = x; x=49;

The problem specification is valid in both directions and does not change, re-
gardless of what are known and what are unknown quantities. By the way, a
clever modeling language (which is not the case for LPL) would reduce the first
model immediately to {y = 7, x = 49} using only local propagation; the second
model would be fed to a non-linear solver which eventually applies a gradient
search method, for which Newton’s approximation is a special case. One could
also imagine that the language has built-in facilities for symbolically transform
the model. In our case, the transformation could be to extract the root from the
first constraint, giving the model:

VARIABLE x; y CONSTRAINT R: y = sqrt(x); x=49;

Again, the model could be reduced immediately to {y = 7, x = 49}. That such
ideas are not pure speculations has been shown in [18], where a complex procedure
is described, that transforms symbolically logical constraints into equivalent 0–1
linear constraints.

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 7

3. Historical Notes

Declarative and demonstrative mathematics originated in Greece during the
Hellenic Age (as late as ca. 800–336 B.C.). The three centuries from about 600
(Thales) to 300 B.C. (Elements of Euclid) constitute a period of extraordinary
achievement. In an economical context where free farmers and merchants traded
and met in the most important marketplace of the time – the Agora in Athens –
to exchange their products and ideas, it became increasingly natural to ask why
some reasoning must hold and not just how to process knowledge. The reasons
for this are simple enough: When free people interact and disagree on some
subjects, then one asks the question of how to decide who is right. The answers
must be justified on some grounds. This laid the foundations for a declarative
knowledge based on axioms and deductions. Despite this amazing triumph of
Greek mathematics, it is not often realised that much of the symbolism of our
elementary algebra is less than 400 years old [7, p. 179]. The concepts of the
mathematical model as a declarative representation of a problem, are historically
even more recent. According to Tarski, “the invention of variables constitutes a
turning point in the history of mathematics.” Greek mathematicians used them
rarely and in an very ad hoc way. Vieta (1540– 1603) was the first who made
use of variables on a systematic way. He introduced vowels to represent variables
and consonants to represent known quantities (parameters) [7, p. 278]. “Only at
the end of the 19th century, however, when the notion of a quantifier had become
firmly established, was the role of variables in scientific language and especially
in the formulation of mathematical theorems fully recognized” [26, p. 12].

It is interesting to note that this long history of mathematics with respect to
algorithmic and declarative representation of knowledge is mirrored in the short
history of computer science and the development of programming languages.
The very first attempt to devise an algorithmic language was undertaken in 1948
by K. Zuse [25]. Soon, FORTRAN became standard, and many algorithmic
languages have been implemented since then.

The first step towards a declarative language was done by LISP. But LISP
is not a fully-fletched declarative language, since a function X

f−→ Y can only be
executed in one direction of calculation, from X to Y . However, an important
characteristic of a declarative language is the symmetry of input and output.
PROLOG was one of the first attempts to make use of a declarative language,
since a PROLOG program is a set of rules. Unfortunately, besides of other limi-

8 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

tations, the order in which the rules are written is essential for their processing,
showing that PROLOG is not truly declarative either. But Prolog had an invalu-
able influence on the recent development of constraint logic programming (CLP),
the only programming paradigm today that merges algorithmic and declarative
knowledge. Unfortunately, the declarative part of a problem and the solution
process are so closely intermingled that it is difficult to “plug in” different solvers
into a CLP language. However, this is exactly what is needed. Since a general
and efficient algorithm for all (computable) mathematical problems is unlikely, it
is extremely important of being able to link a given declaratively stated problem
to different solver procedure. The solution and formulation process should be
strictly separated.

In logic programming the underlying search mechanism is behind the scene
and the computation is intrinsically coupled with the language. This could be a
strength because the programmer does not have to be aware of how the compu-
tation is taking place, he or she only writes the rules in a descriptive way and
triggers the computation by a request. In reality, however, it is an important
drawback, because, for most nontrivial problem, the programmer must be aware
on how the computation is taking place. To guide the computation, the program
is interspersed with additional rules which have nothing to do with the description
of the original problem. This leads to programs that are difficult to survey and
hard to debug and to maintain. This problem is somewhat relieved by the con-
straint logic programming paradigm, where specialized algorithms for different
problem classes are directly implemented in the underlying search mechanism.
However, this makes the language dependent of the implemented algorithms and
problems that are not solvable by one of these algorithm cannot easily be stated
in the language.

In the previous decade a new kind of purely declarative languages emerged
in the community of operations research. The insight, that a single method
can solve almost all linear programs, led to the development of algebraic lan-
guages ([3,4,6,10,16] and others), which are becoming increasingly popular in the
community of operations research. Algebraic modeling languages represent the
problem in a purely declarative way, although the different languages include also
some computational facilities to manipulate the data. One of their strength is
the complete separation of the problem formulation as a declarative model from
the solution process. This allows the modelers not only to separate the two main

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 9

tasks of model formulation and model solution, but also to switch easily between
several solvers. This is an invaluable benefit for many difficult problems, since it
is not uncommon that a model instance can be solved using one method, and an-
other instance is solvable only using another method. Another advantage of such
languages is to separate clearly between model structure, which only contains
parameters (place-holder for data) but no data, and model instance, in which the
parameters are replaced by a specific data set. This leads to a natural separation
between model formulation and data gathering stored in databases. Hence, the
main features of these algebraic languages are:

1. Purely declarative representation of the problem,

2. Clear separation between formulation and solution,

3. Clear separation between model structure and model data.

Algebraic languages are very limited in the sense that by definition no algo-
rithm can be written using their notation. However, it is naive to think that, in
general, it will sufficient to state a problem in a purely declarative way in order
to solve it. Therefore, while these languages can be used successfully for linear
and some non-linear classes of models, they failed to be of much help in hard
discrete problems.

4. Is Declarative Knowledge Useful?

Why would we like to represent a problem declaratively, since we must solve
it anyway and, hence, represent it as an algorithm? The reasons are, besides oth-
ers, conciseness, insight, and documentation. Many problems can be represented
declaratively in a very concise way, while the representation of their computation
is long and complex. Concise writings favour also the insight to a problem: we
can look at the formulation and grasp the essential “at a glance”. The state-
ment z

ez−1 =
∑
n≥0Bn

zn

n! , for example, gives us a concise definition of what the
Bernoulli number Bn are [12, p. 285], namely the coefficients of this power series,
in a way that we almost can “see” them. However, it does not give us an easy
way of finding them.

Another reason why we would like to represent a problem declaratively is
documentation. In many scientific papers which deal with a mathematical prob-
lem and its solution, the problem is stated in a declarative way for documenta-
tional purposes only. However, documentation is by no means limited to human

10 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

beings. We can imagine declarative languages implemented on a computer like al-
gorithmic languages, which are parsed and interpreted by a compiler. In this way,
an interpretative system can analyse the structure of a declarative program, can
pretty-print it on a printer or a screen, can classify it, or symbolically transform
it in order to view it as a diagram or in another textual form.

Are these reasons sufficient to create declarative languages. Certainly!
These reasons alone justify the design and implementation of declarative lan-
guages! There are a whole bunch of tasks we can execute using the computer for
declarative knowledge, besides solving the problem (see [17] for more details).

Of course, the burning question is, of whether the declarative way of rep-
resenting a problem could be of any help in solving the problem. The answer
is yes and no. Clearly, the declarative representation {x ∈ X | R(x)}, in its
general form, does not give the slightest hint on how to find such a x. Problems
represented in this way can be arbitrary complex to solve.

A well known example is Fermat’s last conjecture, which can be formulated
as following:

{a, b, c, n ∈ IN+ | an + bn = cn, a, b, c ≥ 1, n > 2} ?= ∅

It took the mathematical community 350 years to solve this problem as it seems by
now. Only a handful of highly specialized mathematicians understand the proof.
(This raises the question of whether the problem can be settled or how many
mathematicians are necessary to make the proof acceptable. But that is another
story.) Even seemingly harmless problem can be arbitrarily difficult to solve. The
problem of finding the smallest x and y such that {x, y ∈ IN | x2 = 991y2 + 1},
is a hard problem, because the smallest numbers contain 30 and 29 digits and
apparently no other procedure than enumeration is known to find them.

There are even problems that can be represented in a declarative way, but
cannot be computed. The problem of enumerate all even integers {x ∈ IN |
2x ∈ IN}, for example, cannot be computed, because the computation would
take an infinite time. The problem of printing all real number within a unit
circle {x, y ∈ IR | x2 + y2 ≤ 1} is even not enumerable. It is well-known, to give
a nontrivial example, that the set of theorems in first-order logic, a restricted
subset of classical logic, is undecidable (not computable). This can be shown by
reducing the halting problem to the problem of deciding which logical statements
are theorems [Floyd al. p. 520]. These examples simply have the shattering

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 11

consequence: Given an arbitrary declarative formulation of a problem, we can
even not say in the general case whether the problem has a solution or not.

Hence, it seems that the question, of whether the declarative way of rep-
resenting a problem could be of any help in solving the problem, can be
answered negatively.

However, there are problem classes for which a declarative representation
is the computation. A famous example is the algorithm of Euclid to find the
greatest common divisor (gcd) of two integers. One can easily show that

gcd(a, b) =

{
gcd(b, a mod b), b > 0
a, b = 0

This is clearly a declarative way of representing the problem of finding the
gcd , since one can transform it into

{x ∈ IN | x = gcd(a, b), gcd(a, b) = if(b = 0, a, gcd(b, a mod b)), a, b ∈ IN}

This formulation can directly be used to implement a functional (recursive) pro-
gram.

Another example is the 0–1 Knapsack problem, for which a Knapsack of
capacity K should be filled with a subset of n items of volume wi, i ∈ {1 . . . n}.
The problem can be expressed by a predicate PKn which is true if a Knapsack of
capacity K using a subset of the n items exists and false otherwise:

PKn =


true, if n = 0,K = 0
false, if n = 0,K > 0
PKn−1 ∨ PK−wnn−1 , otherwise

It is, again, straightforward to write a program (in a functional programming
style, here in Pascal) that computes this recursive definition:

function Knapsack (n:integer; K:integer; w:IntArray): boolean;

begin

if (n = 0) then

if (K = 0) then Knapsack := true else Knapsack := false

else Knapsack := Knapsack(n-1, K) or Knapsack(n-1, K-w[n]);

end;

12 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

While this program has an exponential complexity in the number of items, one can
easily translate it into a memoized recursion (recursion using a global table which
stores for each (n,K) pair whether the Knapsack is “possible”, “impossible” or
“yet unknown”). The memoized recursion has complexity O(nK), which is the
best one can achieve in general for the 0–1 Knapsack problem.

All problems, for which the instances can be reduced to smaller instances
until finding a trivial (non-reducible) instance, can be treated in this way. This
class of problem is surprisingly large and sometimes even more efficient algorithms
can be discovered using this paradigm. There are textbooks in Algorithmics
entirely based on it, an example is [24].

A class of problems of a very different kind are linear programs, which can
be represented declaratively in the following way:

{min cx | Ax ≥ b}

.
From this formulation – in contrast to the recursive definitions above – nothing
can be deduced that would be useful in solving the problem. However, there exists
well-known methods, e.g the Simplex method, which solves almost all instances
in a very efficient way. Hence, to make the declarative formulation of a linear
program useful for solving it, one only needs to translate it into a form the Simplex
algorithm accepts as input. A commercial standard formulation is the MPSX
format [19]. The translation from the declarative formulation {min cx | Ax ≥ b}
to the MPSX-form can be automated and is a essential task of the mentioned
algebraic languages.

The paradigm of linear programs can be extended to non-linear problems
and to some discrete problems too. Most algebraic languages accept also non-
linear models. The communication with a (non-linear) solver now becomes more
involving, but not impossible. For many solvers, the declarative language only
needs to supply the constraints and their derivatives of the problem in a form of
executable expressions in order to be able to solve it. This can be done in various
ways: (1) generating source code in a algorithmic language (like C or FORTRAN),
compile it and link it with the solver, (2) implement callback functions into
the modeling language, or (3) generating and compile the code “on–the–fly”, a
compiler technique that gains more and more acceptance now [11]. Certainly,

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 13

the achievements in the domain of non-linear and specific discrete models are
much less spectacular than in linear programming. The reasons are that (1)
the interface of most solvers to other programs is much less standardised; (2)
most algebraic languages work on a interpretative basis (compiling “on-the-fly”
has not yet widely gained adepts), which make the adopted solution relatively
slow compared to ad hoc methods; (3) the question of how to communicate the
smallest necessary amount of information to a solver is still a topic of research; this
question is especially disturbing for problems that must call the solver repeatedly.
Despite these shortcomings – which will be partially eliminated as we gain more
experiences – we can conclude that,

yes, for a wide range of problems the declarative way of representing them
can be of use for solving them.

5. Declarative and Algorithmic Knowledge Combined

Nevertheless, it seems doubtful that the paradigm of purely declarative lan-
guages will ever be very useful for the large and – from the practical point of view
– important class of discrete models. Using declarative formulation for many dis-
crete problems in order to solve them really appears to “triple” the effort: (1)
stating the problem in a declarative way, (2) translate it for a solver, (3) writing
the solver – the last task would have been enough.

Therefore, languages that combine declarative and algorithmic knowledge
would be of great help. We could then formulate the solver eventually within
the same language as the declarative part of the model. The difference to the
constraint logic paradigm is that the declarative and algorithmic knowledge are
clearly separated into a declarative and executable part. This is reflected syntac-
tically by the main structure of such a language, which is:

MODEL

<declarative part of the model>

BEGIN

<algorithmic (executable) part of the model>

END

One of the two parts can be empty, indicating that the model is purely declar-
ative or purely algorithmic. The declarative part consists of the basis building
blocks of declarative knowledge: variables, parameters, constraints, model check-

14 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

ing facilities, and sets (that is a way to “multiply” basis building blocks). This
part may also contain “ordinary declarations” of a programming language (e.g.,
type and function declarations). The executable part consists of all control struc-
tures which make the language Turing complete. We may imagine our favourite
programming language being implemented in the executable part. We shall call
a language that combines declarative and algorithmic knowledge, modeling lan-
guage.

Definition: A modeling language is a notational system which allows us to com-

bine (not to merge) declarative and algorithmic knowledge in the same framework.

The content captured by such a notation is called model.

Instead of going through the lengthy description of the syntax and semantics of
such a combined language (details can be found in [17]), several examples are
given which illustrates its advantages.

6. Examples

The following six examples are chosen to show that some problems are best
stated in an purely algorithmic way (examples 1 and 2), others in a purely declar-
ative way (examples 3 and 4), still others can only be processed efficiently using
both paradigms at the same time (examples 5 and 6).

6.1. Sorting

Sorting is a problem which is preferably expressed in an algorithmic way.
Declaratively stated, the problem is the following:

Given an array A[1 . . . n] of integer. Find a permutation such that

∀(i ∈ {1 . . . n− 1})A[i] ≤ A[i+ 1]

.
This is clearly a declarative problem formulation and it could be implemented
using the Prolog language as follows:

sort(S,T) :- permutation(S,T), sorted(T).

sorted([]).

sorted[X]).

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 15

sorted([X,Y|Z]) :- X=<Y, sorted([Y|Z]).

permutation([],[]).

permutation(X,[Y|Z]) :- append(U,[Y|V],X), append(U,V,W),

permutation(W,Z).

This will likely be the lowest sort algorithm one could imagine: enumerate all
permutation, until one happens to be sorted! (Of course, in Prolog one can
also implement an reasonably efficient sort algorithm.) The point is that the
declarative form is useless for efficiently sorting an array. A simple algorithm of
complexity O(n2) is the insertion sort or the bubble sort.

The reason why the sorting problem is best formulated as an algorithm is
probably that the state space is exponential in the number of items, however, the
best algorithm only has complexity O(n logn).

6.2. Euclid’s Algorithm

Euclid’s algorithm represent a large class of recursive problems (as men-
tioned already). Mathematically, the gcd (greatest common divisor) is defined
as:

gcd(n, 0) ≡ n (trivial case) , gcd(n,m) ≡ gcd(m,n mod m) , (0 < m < n)
Note that the symbol ≡ means “is equivalent”. Hence, the first part of the

definition means that the gcd of a number n and zero is n, but also that every
number n can be expressed as gcd(n, 0); the second definition says that gcd(n,m)
for all positive number can be substituted by gcd(m,n mod m), but also the other
way round. However, the interesting case is, in fact, only the “forward” direction,
that is to interpret the definition as a recurrence:

gcd(n, 0) 7→ n (trivial case) , gcd(n,m) 7→ gcd(m,n mod m) , (0 < m < n)
where the symbol 7→ means “can be substituted by”. If interpreted as a

recurrence, one can immediately derive an algorithm to find the gcd of two num-
bers: “Substitute recursively the left hand side by the right hand side until the
trivial case shows up.” This paradigm of recursion is extremely powerful for
designing algorithms. Hoare [13] wrote that he had no easy way to explain his
Quichsort before he was aware of the recursion in Algol60.

6.3. Assembling a Radio

This example (and the next one) show a problem which is most easily ex-
pressed in a purely declarative way. It also illustrates how logical and mathe-

16 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

matical constraints can be mixed in the same model formulation. This is worth
mentioning, because LPL is the only algebraic language to my knowledge which
can mix logical and mathematical constraints in the same model. The example is
from [1, p. 28], where also a constraint logic programming formulation is given.
The problem can be stated informally as follows:

To assemble a radio any of three types (T1, T2, T3) of tubes can be used. The

box may be either of wood W or of plastic material P . When using P , dimensionality

requirements impose the choice of T2 and a special power supply F (since there is no

space for a transformer). T1 needs F . When T2 or T3 is chosen then we need S and

not F . The price of the components are, as indicated, in the objective function. Which

variants of radios are to be built in order to maximize profit?

A formal specification of the model is given in Figure 1.
The constraints are Boolean expressions and the objective function is a

mathematical (linear) statement. The variables can be shared because the con-
vention is adopted in LPL to interpret the values (TRUE, FALSE) of a Boolean
variable numerically as ONE and ZERO.

The Boolean (0–1) variables are:
T1, T2, T3 use one of the three types of tubes
W,P use wood or plastic box
F, S use transformer or a special power supply

The constraints are:
XOR(T1, T2, T3) Any one of the tubes can be used,
W

.
∨ P The box may be either of wood or plastic,

P → T2 ∧ S When using P , dimensionality requirements
impose the choice of T2 and a special power supply,

T1→ F T1 needs F ,
T1 ∨ T2→ S When choosing T2 or T3 we need S,
F

.
∨ S Either F or S must be chosen.

The objective is to maximze the revenu:
110W + 105P − (28T1 + 30T2 + 31T3 + 25F + 23S + 9W
+6P + 27T1 + 28T2 + 25T3 + 10)

Figure 1: Assembling a Radio

In LPL (version 4.30), the model is formulated as follows:

MODEL Radio "how to assemble a radio";

BINARY VARIABLE T1, T2, T3, W, P, F, S;

CONSTRAINT

R1: XOR(T1,T2,T3); R2: W XOR P;

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 17

R3: P -> T2 AND S; R4: T1 -> F;

R5: T1 OR T2 -> S; R6: F XOR S;

MAXIMIZE Revenue : 110*W + 105*P

-(28*T1+30*T2+31*T3+25*F+23*S+9*W+6*P+27*T1+28*T2+25*T3+10);

END Radio.

LPL translates the Boolean expressions into a conjunctive normal form and then
generates linear constraints, giving a simple 0–1 IP problem which can now be
solved be a standard MIP-solver.

It is difficult to imagine how this problem could be formulated in an easy
way using only algorithmic knowledge!

6.4. A Two-Persons Zero-Sum Game

Another problem class are two-persons zero-sum games. Such problems are
best formulated as linear programs, as shows the coding. The following game
was described in [14, p. 770ff]:

Let us play the following two-persons game: Both players chose at random a positive

number and note it on a piece of paper. They then compare them. If both numbers are

equal, then neither player gets a payoff. If the difference between the two numbers is one,

then the player who has chosen the higher number obtains the sum of both; otherwise

the player who has chosen the smaller number obtains the sum of both. What is the

optimal strategy for a player, i.e. which numbers should be chosen with what frequencies

to get the maximal payoff?

The game is a two-persons zero-sum game and can be formulated as shown
in Figure 2.

The sets are:
I a set of strategies for player one
J a set of strategies for player two

The parameters with i ∈ I, j ∈ J are:
pi,j the payoff matrix

The variables are:
xi optimal frequency of the i-th strategy (player one)

The constraint is:∑
i xi = 1 the probabilities must sum to one

The objective is to maximize the minimal gain is:
MAXIMIZE: minj(

∑
i pi,jxi)

Figure 2: A 2-Persons-Zero-Sum Game

18 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

This game has an interesting solution as will be seen shortly. Let us just
play the game for a while to get a feeling for it. Suppose a player chooses a very
big number, say a million, then chances are high that the second player chooses a
smaller number and wins the round with a high payoff. If, on the other hand, the
first player chooses a very small numbers chances are high (but not so high) that
the second player chooses a bigger number. Hence the game is not symmetric
with respect to big and small numbers. At least by choosing a small number, a
player cannot loose a large amount of money. But choosing one all the time will
also be a loosing strategy, since the other player then always chooses two.

The number of strategies is infinite (any positive number can be chosen).
Let us restrict ourselves to the range of numbers, say [1,50], otherwise we have
an infinite large problem! (The result will justify this choice). The payoff matrix
is calculated as follows:

pi,j =



−j, if i > j + 1
i+ j, if i = j + 1
0, if i = j

−i− j, if i = j − 1
j, if i < j − 1

In LPL , the complete model is coded as follows:

MODEL Game "A finite two-person zero-sum game";

SET i ALIAS j := /1:50/;

PARAMETER p{i,j}:= IF(j>i,IF(j=i+1,-i-j,MIN(i,j)),

IF(j<i,-p[j,i],0));

VARIABLE x{i};

CONSTRAINT R: SUM{i} x[i] = 1;

MAXIMIZE gain: MIN{j} (SUM{i} p[i,j]*x[i]);

WRITE x;

END Game.

Note that this formulation is not a linear program. LPL , however, will automati-
cally translate this model symbolically into a linear one: the maximizing function
is replaced by the following part of the model:

VARIABLE X11 -- introduce a new (continuous) variable

CONSTRAINT X12{j}:=X11<= SUM{i} p[i,j]*x[i]

MAXIMIZE gain:=X11

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 19

(The surprising result of this model is, that a player should never choose numbers
that are larger than 5. One should be chosen with frequency 24.75%, two with
18.81%, three with 26.73%, four with 15.84%, and five with 13.86%.)

Again, it would be hard to find a formulation of this problem class which
is more economic. Furthermore, only the definition of the parameter p must be
changed to get a different two-persons zero-sum game!

6.5. The Cutting Stock Problem

Let us now present two examples, for which it is probably best to mix
algorithmic and declarative knowledge in a well-defined and controlled way. The
problem is the following:

Paper is manufactured in rolls of 100 inches width. The following orders have to
be fulfilled:

97 rolls of 45 inches width
610 rolls of 36 inches width
395 rolls of 31 inches width
211 rolls of 14 inches width

How should the initial rolls of 100 inches width be cut into slices such that paper

waste is minimized?

Using the common mathematical notation, the problem can be formulated
in a purely declarative way as shown in Figure 3.

Two sets are declared as:
W the different widths that have been ordered,
P all possible cutting patterns

With w ∈W, p ∈ P , the parameters are:
aw,p number of cut rolls of width w in pattern p
dw demand for the cut rolls

With p ∈ P , the variables are:
Xp number of the initial rolls cut according to pattern p,

The constraints are as following:∑
p aw,pXp ≥ dw orders are to be met forall w ∈W

Minimize the number of rolls:
MINIMIZE:

∑
pXp

Figure 3: An LP of the Cutting Stock Problem
Unfortunately, this formulation has, even for moderate size problem in-

stances, a very large number of variables which exceeds any memory capacity
on a computer. While compactly formulated in a purely declarative way, this

20 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

problem cannot be solved directly.
A well-known method in operations research to solve this problem is to use a

column generation method (see [5, Chap. 13] for details), that is, a small instance
with only a few patterns (variables) is solved and a rewarding column is added
repeatedly to the problem. The new problem is then solved again. This process is
repeated until no pattern can be added. The problem consists of two declaratively
formulated problems (a linear program and a Knapsack problem), which are
repeatedly solved. Hence, part of the problem can be formulated declaratively
(Figure 4 combines both declarative models), and part of the problem is stated
in an algorithmic form (Figure 5).

Two sets are declared as:
W the different widths that have been ordered,
P all possible cutting patterns

With w ∈W,p ∈ P , the parameters are:
aw,p number of cut rolls of width w in pattern p
dw demand for the cut rolls
bw width of the cut (ordered) rolls
B width of the initial rolls

With p ∈ P , the variables are:
Xp number of the initial rolls cut according to pattern p,
yw number of rolls of size w in a newly generated pattern,
z total number of initial rolls used,
v contribution that a newly generated pattern can make.

The constraints are as following:
(1)

∑
p aw,pXp ≥ dw orders are to be met forall w ∈W

(2) z =
∑
pXp the total number of initial rolls is given

(3)
∑
w bwyw ≤ B the initial width cannot be exceeded by a pattern

(4) v =
∑
w C

∗
wyw the contribution (C∗w are the marginals of (1))

Minimize the number of rolls:
MINIMIZE:

∑
pXp

Figure 4: The Cutting Stock Problem (declarative part)
There are clear advantages of stating part of the problem declaratively and

part of it algorithmically, without commingle them with each other: (1) the
code becomes more readable and compact, (2) the two parts can be maintained
separately, giving more flexibility, (3) many problems have a knowledge part that
is more suitable to be formulated in a declarative way, and another part that is
more apt to be stated algorithmically, an optimal mix can be chosen.

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 21

Initialize P : Let P be a set of the same cardinality as W .
Initialize aw,p : if w = p then aw,p = b Bbw c else aw,p = 0
Solve the cutting-stock model defined by: {min z , subject to (1) and (2) }
Solve the find-pattern model defined by: {max v , subject to (3) and (4) }
while v > 1 do

add a new element s to P (P = P ∪ {s})
update the table a as follows: aw,s = yw

Solve the cutting-stock model
Solve the find-pattern model

endwhile
Figure 5: The Cutting Stock Problem (algorithmic part)

The overall structure of the cutting stock problem, coded in LPL version 4.30
is:

MODEL CuttingStock "The cutting stock problem" ;

MODEL cutting_stock; <...define the model...>

MODEL find_pattern; <...define the model...>

BEGIN (* executable (procedural) part *)

SOLVE cutting_stock;

SOLVE find_pattern;

WHILE <...condition...> DO

<...add a new pattern, found in find_pattern...>

SOLVE cutting_stock;

SOLVE find_pattern;

END;

END CuttingStock.

This is a compact and very readable way to formulate the process of column gen-
eration! The declarative part of the model consists of stating two (sub)- models,
the smaller cutting-stock model (an lp) and the find-pattern model (a Knapsack
problem). Each of them could contain its own declarative and algorithmic part.
Since the first submodel is an lp, and the second one can easily be solved by a
standard MIP solvers, if |W | is not too large, neither model does need to contain
their own executable part. Both can be formulated as purely declarative models.

The complete model (also coded in LPL 4.30) can now be written as follows:

MODEL CuttingStock "The (fractional) cutting stock problem" ;

SET

widths ALIAS w "the different ordered smaller rolls";

22 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

patterns ALIAS p "possible cutting patterns";

MODEL cutting_stock ALIAS cs;

PARAMETER

a*{w,p} "number of w rolls in p";

demand{w} "the demand for small roll w";

VARIABLE

rolls_cut{p} "number of rolls cut according to p";

total_number "the total number of rolls to be cut";

CONSTRAINT

cuts-{w} ::= SUM{p} a * rolls_cut >= demand;

objective ::= total_number = SUM{p} rolls_cut;

MINIMIZE obj ::= total_number;

WRITE rolls_cut; total_number;

END cutting_stock.

MODEL find_pattern ALIAS fp(c);

PARAMETER

length{w} "the length of small roll w";

total_length "the width of the (uncut) roll";

VARIABLE

y-{w} INTEGER "the number of rolls of size w";

contribute- "the contribution of a new pattern";

CONSTRAINT

pattern ::= SUM{w} length * y <= total_length;

objective ::= contribute = SUM{w} c.dual * y;

MAXIMIZE obj ::= contribute;

END find_pattern.

BEGIN (* -------- executable part --------- *)

SOLVE cutting_stock;

SOLVE find_pattern(cs.cuts);

WHILE (fp.contribute > 1) DO

p := p + {’pattern_’+str(card(p))}; (* union operator *)

cs.a{w,#p} := fp.y[w];

SOLVE cutting_stock;

SOLVE find_pattern(cs.cuts);

END;

WRITE cutting_stock;

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 23

END CuttingStock.

It should be noted that [2] has independently developed similar ideas, and the
new version of their AIMMS modeling system implements them.

6.6. The Travelling Salesperson Problem (TSP)

This problem can be stated as follows: the shortest round-trip of n towns is
to be found visiting each town exactly once. There exist many way to tackle the
TSP problem. One is sketched here to illustrate again how useful a combination of
declarative and algorithmic knowledge can be. The approach is also a well-known
technique in operations research: row-cut generation. First the TSP is stated as
an assignment problem, which is solved. As long as some subtours exist in the
solution, constraints are added. Unfortunately, adding these constraints might
introduce non-integer (extreme) solutions, and many other cuts are needed – but
this is another story. Here in our model, integrality on the variables is imposed
explicitly to illustrate our point. (We do not claim it to be an efficient solution
approach.) The problem can be stated (in a future version of LPL ; LPL 4.30 does
not have yet the feature FUNCTION) as follows:

MODEL Tsp;

SET i ALIAS j "locations to visit";

PARAMETER c{i,j} "distance matrix";

VARIABLE x{i,j} BINARY "=1 if (i,j) is in the tour else 0";

CONSTRAINT R1{i} : SUM{j} x = 1; R2{j} : SUM{i} x = 1;

MINIMIZE tour: SUM{i,j} c*x;

SET k; s{k,i};

CONSTRAINT SubToursEli{k} :

SUM{i IN s[k] circular} x[i,i+1] <= #s[k]-1;

FUNCTION StrongComponent(x) BEGIN <...> END;

BEGIN

SET temp :={};

PARAMETER n := 0;

WHILE true DO

SOLVE TSP USING lp;

temp := StrongComp(x);

IF #temp[1]=#i then BREAK;

WHILE temp[1] DO

n:=n+1;

24 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

Add(k,n);

Add(s,temp);

END;

END;

END Tsp.

7. Conclusion

The few examples show clearly that a modeling language, that is a language
which combines algorithmic and declarative knowledge, can have clear benefits.
Problems which cannot be formulated easily in either paradigm, can be expressed
compactly and in a “natural” way. All these problems have been implements
previously using algorithmic knowledge alone. This led to ad hoc, and lengthy
code, where the process of solving and the task of formulating the declarative
part are closely woven with each other. Such programs are harder to debug, to
maintain, to document, and to understand.

Modeling, that is, the skill to translate a problem into a declarative and
algorithmic code, should no longer be an “ad hoc science” where “everything
goes”. It should be – like programming, the skill to write algorithms – an art not
a black art. Furthermore, modeling should follow certain criteria of quality in the
same way as software engineering teaches it for writing algorithmic programs.

The main criteria are: reliability and transparency. Reliability can be
achieved by a unique notation to code models, and by various checking mech-
anisms (type checking, unit checking, data integrity checking and others). Trans-
parency can be obtained by flexible decomposition techniques, like modular struc-
ture as well as access and protection mechanisms. This is probable the hottest
topic in software engineering and language design today. Hence, what is true for
programming languages is even more true for modeling languages [63].

References

[63] ABELSON H. & SUSSMAN G.J. & SUSSMAN J., 1985. Structure and Interpretation of

Computer Programs, The MIT Press, Cambridge, Mass.

[1] BARTH P., 1996. Logic–Based 0–1 Constraint Programming, Kluwer Academic Publishers,

Boston.

[2] BISSCHOP J., 1997. Personal Communication, Paragon Decision Technology B.V.

T. Hürlimann / Modeling Languages: A new Paradigm of Programming 25

[3] BISSCHOP J. & ENTRIKEN R., 1993. AIMMS, The Modeling System, Paragon Decision

Technology B.V.

[4] BROOKE A. & KENDRICK D. & MEERAUS A. 1988. GAMS, A User’s Guide, The

Scientific Press.

[5] CHVÁTAL V., 1973. Linear Programming, W.H. Freeman Company, New York.

[6] CUNNINGHAM K., & SCHRAGE L. 1989. The LINGO Modeling Language, University

of Chicago, Preliminary, 27 February.

[7] EVES H., 1992. An Introduction to the History of Mathematics, sixth edition, The Saunders

Series, Fort Worth.

[8] FEIGENBAUM E.A., 1996. How the What Becomes the How, Communications of the

ACM, Vol. 39, No. 5, pp 97–104.

[9] FLOYD R. W. & BEIGEL R., 1994. The Language of Machines, An Introduction to Compu

tability and Formal Languages, Computer Science Press.

[10] FOURER R. & GAY D.M. & KERNIGHAN B.W., 1993. AMPL, A Modeling Language

For Mathematical Programming, The Scientific Press, San Francisco.

[11] FRANZ M., 1994. Code–Generation On–the–Fly: A Key to Portable Software, Informatik–

Disseration, ETH Zrich, Nr. 47, Verlag der Fachvereine Zrich.

[12] GRAHAM R.L. & KNUTH D.E. & PATASHNIK O., 1994. Concrete Mathematics, (2nd

edition), Addison–Wesley Publ. Comp., Reading, Massachusetts.

[13] HOARE C.A.R. & Jones C.B., 1989. Essays in Computing Science, Prentice Hall, New

York.

[14] HOFSTADTER D.R., 1988. Metamagicum, Fragen nach der Essenz von Geist und Struk-

tur, Klett–Cotta, Stuttgart.

[15] HOPL 1993: Cambridge, Massachusetts, USA, History of Programming Languages Confer-

ence (HOPL–II), Preprints, Cambridge, Massachusetts, USA, April 20–23, 1993. SIGPLAN

Notices 28(3), March 1993.

[16] HÜRLIMANN T., 1997. Reference Manual for the LPL Modeling Language, Working Pa-

per, Version 4.25, November 1997, Institute of Informatics, University of Fribourg, (newest

version is always on: ftp://ftp–iiuf.unifr.ch/pub/lpl/doc, file Manual.ps).

[17] HÜRLIMANN T., 1997a. Computer–Based Mathematical Modeling, Habilitation Script,

accepted by the Faculty of Economic and Social Sciences of the University of Fribourg,

Switzerland, December 1997, Institute of Informatics, University of Fribourg.

[18] HÜRLIMANN T., 1998. An Efficient Logic-to-IP Translation Procedure, Working Paper,

March 1998, Institute of Informatics, University of Fribourg, (a PostScript version is at the

LPL site: ftp://ftp-iiuf.unifr.ch/pub/lpl/doc, file APMOD1.ps).

[19] IBM, 1988. Mathematical Programming System Extended/370 (MPSX/370), Version 2,

Program Reference Manual.

[20] JAFFAR J. & MAHER M.J., 1996. Constraint Logic Programming: A Survey, (to appear),

(a final draft can be downloaded from pop.cs.cmu.edu in the directory: /usr/joxan/public).

[21] KNUTH D.E., 1996. Selected Papers on Computer Science, Cambridge University Press.

Chapter 11, Ancient Babylonian Algorithms, (first print 1972).

26 T. Hürlimann / Modeling Languages: A new Paradigm of Programming

[22] KNUTH D.E., 1996a. Selected Papers on Computer Science, Cambridge University Press.

Chapter 4, Algorithms in Modern Mathematics and Computer Science, (first print 1979).

[23] LOUDEN K.C., 1993. Programming Languages – Principles and Practice, PWS–KENT

Publ. Comp., 1993.

[24] MANBER U., 1989. Introduction to Algorithmics, A Creative Approach, Addison–Wesley

Publ. Comp., Reading, Massachusetts.

[25] NAUR P., 1981. The European Side of the Last Phase of the Development of ALGOL 60,

in: History of Programming Languages, Wexelblat R.L. (ed.), (from the ACM SIGPLAN

History of Programming Languages Conference, June 1–3, 1978), Academic Press.

[26] TARSKI A., 1994. Introduction to Logic and to the Methodology of the Deductive Sciences,

4rd edition, Oxford University Press.

[27] WILSON & CLARK, 1993. Comparative Programming Languages, Addison–Wesley, 1993.

[28] YAGLOM I.M., 1986. Mathematical Structures and Mathematical Modelling, Gordon and

Breach Science Publ., New York, (transl. from the Russian by D. Hance, original ed. 1980).

@Bookpardal1-1, author=E.H.L. Aarts and J.H.M. Korst, title=Simulated annealing and

Boltzmann machines, publisher=Wiley, year=1989

@Articlepardal1-2, author=R.E. Burkard and F. Rendl, title=A thermodynamically moti-

vated simulation procedure for combinatorial optimization problems, journal=European J.

Operations Research, volume=17, year=1984, pages=169-174

