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“...Science as well as technology, 
will in the near and in the farther future 

increasingly turn from problems of intensity, 
substance, and energy, to problems of structure, 

organization, information, and control.....” 
J.v.Neumann 

INTRODUCTION 

This paper gives a somewhat biased survey of logic programming. The bias is 

to make the connection between predicate logic and logic programming very 

clear. It is, therefore, necessary to read first my paper Logic, a Survey 

[Hürlimann 93b]. Several examples will explain the connections as well as the 

link to Prolog, the classical language in logic programming. 

In an imperative programming language such as Pascal one needs to write 

down how a task is executed. The path to the solution is then written as a 

sequence of procedures and functions. In logic programming, one must only 

write down what the problem is. To find a solution is the problem of its 

inference machine. Therefore, we may say that a logic programming language 

is a declarative language and the others are imperative languages. We may also 

say that "a language is called declarative when the programming activity does 

not require particular knowledge about the order of evaluation." [Lock p 22]. 

To illustrate the point take the problem of calculating the faculty of an integer. 

The faculty is defined as 

 faculty of zero is one 

 faculty of n > 1 is faculty of n–1 times n. 

Formally, the definition can be stated as 

 fac(0) = 1 

 fac(n) = fac(n–1)*n    (for all n > 0) 

In logic programming we would just enter this definition without any indication 

how to manipulate it. So in logic programming we may write 
 

 fac(X,0) :- X=1 

 fac(X,N) :- N*fac(X,N-1) 

 

In an imperative language such as Lisp, one may write the function as 
 

 (define fac (n) 

    (if (= n 0) 1 

        (* n fac(n-1))) 

 

or in Pascal the function may be written as 
 

 function fac(n:integer):integer; 

 begin 

   if n=0 then fac:=1 

   else fac:=n*fac(n-1); 

 end; 
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both functions are essentially the same. Both are called with an argument n. If 

the argument is bigger than zero the function is called recursively with an 

argument n–1. In spite of its resemblance with the Lisp and Pascal function, the 

logic program, however, has a very different semantic and execution path. It 

does not indicate how to solve the problem. It just states the definition of 

faculty, much like we define a term in mathematics. To see the point, one may 

put the query in logic programming: 
 

 :- fac(5040,N) 

 

which means “what is the number such that the faculty is 5040?” This is very 

different from what the imperative function could do. While the imperative 

functions have a defined direction in its calculation, the logic program does 

not. It don't even matter what the input is and what the output is. 

 

Another way to say the difference is to note that an imperative program 

implements mappings, that is having implemented a mapping m(x), we can 

make the following request: 

 given a, return the value of m(a). 

Logic programming, however,  implements relations, that is, having 

implemented a relation R(x,y), we can make the following requests: 

 given a and b, determine whether R(a,b) is true 

 given a, find all x such that R(a,x) is true 

 given b, find all x such that R(x,b) is true 

 find all x and y such that R(x,y) is true. 

 

 

 

 

Where does this power of logical programming come from? A logic program is 

nothing else than a formula in predicate logic. (Almost) all that can be written 

in first order logic can also be expressed in a logic program. The main 

objective of this paper is to make this connection clear. 

DEFINITIONS 

A logic program is defined as a set of clauses (=Skolem normal form). 

Normally in practical implementation, there are limitations on the form of the 

clauses allowed. Prolog is essentially based on Horn-clauses, more precisely, 

all clauses must be definite clauses (=clauses containing exactly one positive 

literal) except one clause which has no positive literal at all. The definite 
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clauses are called rules, if they contain at least two literals. They are called 

facts, if they contain only one literal (a unit clause). The single clause without 

any positive literal is called goal (or query). Rules, facts, and goals are 

compared in the following table (A, B, C, and D are literals, T means true, and 

F means false): 

 

 logic prog. syntax first order syntax clausal form 

rules A :- B  C  D  ... A  B  C  D  ... A  ¬B  ¬C  ¬D  ¬... 

facts A :- A  T A 

goals :-  B  C  D ... F  B  C  D  ... ¬B  ¬C  ¬D  ¬... 

 

The AND-connector is replaced a space (or sometimes by a comma), and the 

implication () is replaced by the symbol :- (in a goal the symbol ?: is 

sometimes used). Since a logic program is a Skolem normal form, all variables 

are bounded by all-quantifiers (which are omitted within a logic program). 

Hence, we can write the clauses in first order logic as 

 

 rules :    xy...(ABC DK )  

 facts :  xy...(A)  

 goals:    xy...(BC DK )  which is the same as 

     (xy...(BCDK )  

 

Note that the query (goal) is the negation of an existence theorem converted to 

logic programming form. 

There are also syntax prescriptions concerning the atoms (literals): function 

names and predicate names normally must begin with a lower-case letter, 

whereas variables begin with a upper-case letter.  

A rule has two parts, the head (left from the :- symbol) and the tail (right to the 

:- symbol). A fact consists only of a head, whereas a goal consists only of a tail. 

The head contains only one (positive) literal (atom), and the tail is a 

conjunction of (positive) literals.  

The whole syntax of a logic program is as following (where f is a functor-

name, p is a predicate-name, “|” means select, and “{ ... }” means repeat any 

times): 
 

program ::= {clause} 

clause ::= fact | rule | goal 

fact ::= atom :- 

rule ::= atom :- {atom} 

goal ::= :- {atom} 

atom ::= p | p ( {term} ) 

term ::= f | f ( {term} ) | Variable 
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Since a logic program is the same as a set of clauses, the objective is to prove 

the validity of a formula: given a knowledge base (a set of clauses) we have to 

prove an arbitrary formula. This is done using resolution. We use a simple 

example to explain how resolution can be viewed in a logic program. Suppose 

the knowledge base consists of the two facts (=atoms) r and s (note that r and s 

are predicates) and the single rule t :- r s. The program is 
 

r :- 

s :- 

t :- r s 

 

Suppose the clause to prove is t. The goal to add to the knowledge base is 
 

:- t 

 

Our whole logic program is now 
 

r :- 

s :- 

t :- r s 

:- t 

 

We can express this program in first order logic (actually in propositional logic 

since no variables appear) as following 
 

r  T 

s  T 

t  r  s 

F  t 
 

Or expressed in clausal form we have: 
 

r 

s 

t  ¬r  ¬s 
¬t 

 

To use resolution, the negation of the formula to prove has to be added to the 

knowledge base to prove the inconsistency of the system. By defining a goal in 

the logic program, the negation is automatically added to the knowledge base 

as we see by the example. Resolution now consists to find the same literal – 

once positively and once negatively – in two different clauses and to produce 

the resolvent (see Hürlimann 1993b). From the point of view of a logic 

program, this means to unify a head of a clause with an atom of a tail, since the 

head-atom is a positive literal and the tail-atoms are negative literals in the 

clausal form. In our example we have the three possible matches: 

1 The head of the first clause can be unified with the first tail-atom of 

the third rule (r :- and  t :- r s) 

2 The head of the second clause can be unified with the second tail-
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atom of the third rule (s :- and  t :- r s) 

3 The head of the third clause can be unified with the goal 

 (:- t and  t :- r s) 

In logic programming, resolution is goal directed, which means that to trigger 

the resolution procedure the goal is resolved with any clause. A resolvent can 

then be interpreted as a new goal from which the search goes on. In our 

example, the goal will be unified with the head of the third clause which leaves 

us with the new goal (that is the tail of the third clause): 
 :- r s 

To prove t, we have now reduced the goal to prove r and s. Now the proof has 

to branch: first we have to prove r and later on we have to prove s. Let's begin 

with r. The goal (:-r) can be unified with the head of the first clause (r:-). Since 

we obtain the empty clause we are finished, and we are left with the second 

half to prove s. The (new goal (:-s) can be unified with the second clause (s:-) 

which again produces the empty clause. Since we have proved both r and s 

which was needed to prove t we are finished. The computation of the proof can 

be visualized by the computation tree (or deduction tree) see Figure 1: To 

prove t, prove r and s. 

 

:- t

:- r  s

:- r :- s

success success

and

t:- r s

r:- s:-

 

Figure 1 

The resolution just described is called SLD-resolution. It is a special case of 

linear resolution which 

1) is goal-directed: The goal is matched with the head of an input-

clause. 

2) clause-ordered: The goal is unified with the first possible clause 

from top to bottom. 

3) goal-left-to-right-ordered: the atoms of the goal are unified from left 

to right. 
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To illustrate SLD-resolution with unification we use a second simple example: 

“John needs vitamin C. Carrots contain vitamin A and oranges contain vitamin 

C. Any person should eat what he or she needs”. The knowledge could be 

modeled as a logic program as following: 
 

needs(john,vitamin_C) :- 

found_in(vitamin_A,carrot) :- 

found_in(vitamin_C,oranges) :- 

should_eat(X,Y) :- found_in(Z,Y) needs(X,Z) 

 

The goal now is to infer whether John should eat oranges. The query, therefore, 

is: 
:- should_eat(john,oranges) 

In clausal form, we have the following clauses where the goal is negated: 
 

needs(john,vitamin_C) 

found_in(vitamin_A,carrot) 

found_in(vitamin_C,oranges) 

should_eat(X,Y)  ¬found_in(Z,Y)  ¬needs(X,Z) 
¬should_eat(john,oranges) 

 

The goal is unified with the head of the forth clause which produces the new 

goal using the unificator {john/X,oranges/Y} (see Hürlimann 1993b): 
:- found_in(Z,oranges) needs(john,Z) 

In clausal form this is written as: 
¬found_in(Z,oranges)  ¬needs(john,Z) 

The new goal is evaluated from left to right, therefore, we take first 

found_in(Z,oranges). This subgoal is tried to unify with the second clause 

found_in(vitamin_A,carrot). Since the unification fails, we try to unify 

found_in(Z,oranges) with the third clause found_in(vitamin_C,oranges). 

Unification is successful and Z is bounded to vitamin_C. Hence, we are left 

with the second subgoal needs(john,vitamin_C). This goal can be unified with 

the first clause. The empty clause results and the inconsistency is proved. The 

deduction tree is shown in Figure 2. 

 

:- should_eat(john,oranges)

and

:- found_in(Z,oranges)  needs(john,Z)

or

found_in(vitamin_A,carrot)
found_in(vitamin_C,oranges)

fail success

needs(john,vitamin_C)

success

{X=john, Y=oranges}

{Z=vitamin_A}

{Z=vitamin_C}
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Figure 2 

The execution mechanism is a top down procedure which reduces the goal to 

further subgoals until the empty clause (success) is found. If several causes 

contain the same head we can take either of them. This corresponds to an OR-

node in the deduction tree. If the goal contains several subgoals, we need to 

prove all of them. This corresponds to an AND-node in the tree. To prove the 

formula the deduction tree must contain at least one success node beneath 

every branch of each AND-node. If we reach a fail node, we needs to backtrack 

to the next OR-node and to try another branch which has not yet tried. If none 

of them is left, we needs to backtrack even further up the tree to the next OR-

node. When backtracking bounded variables beneath the backtracking point 

(OR-node) must be freed. 

 

PROLOG II 

A logic program does not determinate how the deduction tree is traversed, a 

logic program is intrinsically non-deterministic. We might imagine a parallel 

machine that executes the different branches in parallel: an OR-node succeeds 

if at least one branch succeeds, and an AND-node succeeds if all branches 

succeed. On a sequential machine, however, the tree is normally executed in 

prefix-order. This corresponds to the SLD-resolution procedure. And Prolog is 

based on SLD-resolution. 

 

The prefix-order evaluation (of Prolog) has several serious consequences on 

the execution time: the order at which the rules and the sub-goals are written 

within a program matters. This introduces a procedural element into the 

program which is not necessarily a disadvantage. On the contrary, the break-

though in logic programming was the fact that rules can be interpreted as 

procedures, and terms as data structures [Kowalski 1979] who coined the 

statement: Algorithm = Logic + Control. The logic is stuffed in the rules and 

the control is the knowledge of the traversal information of the tree. 

But this restriction toa specified traversal destroyed the soundness of a program 

eventually. Sometimes, the evaluation will even loop for ever. To illustrate this 

point, we may take another example. Suppose we have the following program 
 

 p(f(X)) :- p(X) 

 p(a) :- 

 

and we wanted to prove 
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 :- p((a) 

 

Resolving the goal with the first rule will bind the variable X to f(a) and the 

new goal to prove is p(f(a)). Resolving again with the first rule will bind the 

variable to f(f(a)) and the new goal to prove is p(f(f(a))), etc. If, however, we 

would have reversed the two rules as in 
 

 p(a) :- 

 p(f(X)) :- p(X) 

 

then a single match would have produced the empty clause. Therefore, the 

order of the clauses matters for the SLD-resolution. 

But also the order of the literals within the goal is important. In comparison 

with the order of the clauses, however, his second indeterminismn is harmless, 

because it does not destroy the soundness. It can have an influence on the 

running time as the following example shows. 
 

; this is inefficient 

query1(X,Y) :- 

  father_of(Y,Z) 

  wife_of(Z,W), 

  brother_of(W,X) 

 

; this is more efficient 

query2(X,Y) :- 

  brother_of(W,X), 

  wife_of(Z,W), 

  father_of(Y,Z) 

 

Every person has a father but much less persons has a brother. So it might be 

more efficient to filter all brother which reduces the search greatly. 

 

There are some other – from the point of view of a logic program – “impure” 

constructs which are necessary to have a versatile programming language: 

1) The occur check: Depending on how the occur test is done within the 

unification algorithm, the evaluation can even produce a false answer! The 

reason is the following: We know that the two clauses P(x,x), P(x, f (x)) 

cannot be unified. Some Prolog, however, unify this to give P( f (x), f (x)) , 

which is false! 

2) Since Prolog is restricted to Horn-clauses,no negated literal is allowed. 

Several Prolog implementation, however, have a not(X) predicate, which 

succeeds iff an atempt to solve the given atom X fails. But this predicate must 

be used with care or in a cerain context only. An example is the following rule. 
 

IsRichAndUnhappy(X) :- not(happy(X))  rich(X) 

 

will not be accepted by most Prolog interpreter, whereas with 
 

IsRichAndUnhappy(X) :- rich(X)  not(happy(X)) 
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most Prolog do not have any problem. The reason is that in the second version 

X was bound – say to a – when unifying rich(X) with rich(a), so not(happy(a)) 

is a constant now. The expression not(happy(a)) fails if happy(a) is a fact in the 

knowledge base otherwise it succeeds. We call this mechanism negation by 

failure, which adopts the heuristics that evey fact that is not known is also 

false. Clearly the not predicate is not the same as the negation. To see this 

consider the following example: 
 

happy(X) :- not(sad(X)) 

sad(fred) :- 

 

the query (of the unknown fact that jane is happy) :-happy(jane) will succeed, 

but the queries :-happy(fred) and :-happy(X) both will succeed. 

3) Two build-in predicates are cut and fail. The cut predicate is a powerful 

method to prune the search tree. When cut appears in the tail of a goal then it 

immediately succeeds, but if the computation must backtrack to this call of cut 

it fails and thus any part of the tree that lay beyond that point may not be 

searched. The fail predicate fails all the time. To illustrate these predicate 

consider the following rule that define the not predicate. 
 

not(X) :- call(X) cut fail 

not(X) :- 

 

We suppose that call(X) is a build-in predicates that takes an atom as argument 

and simply calls a procedure whose head unifies with this atom. If we evaluate 

the goal :-not(a) then a will be unified with X in call(X). If this fails, the 

resolution tries to unify with the second rule (fact) and succeeds. If the 

unification of call(X) succeeds then cut will succeeds too but fail will fail. 

Since the procedure cannot backtrack beyond the cut, the second rule cannot be 

executed and so our original goal fails. Hence, we have the following, if a 

succeeds then not(a) fails and if a fails then not(a) succeeds. 

4) Any arithmetic, computable functions can be describted by a definite 

program. That means that from a theoretical point of view the paradigm of 

logic programming is not less expressive than any other programming 

language. But this can be very inefficient. Therefore, several arithmetic 

functions are “hardwired” within the Prolog-Interpreter. The problem is, 

whether this does not destroy the declarative manner of logic programming. 

Fortunately, the operators can be expressed as “predicates”. Hence, instead of 

writing “4+5”, we may adopt the syntax “plus(4,5,X)” which returns the result 

in X. Most prolog allow also the infix notation using the is construct (such as 

“X is 4+5”. Such “predicates” must not be confounded with the l,ogic predicate 

plus() that could be used for substraction too. 
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EXAMPLES 

EXAMPLE 1: THE PATH IN A GRAPH [SCHMITT 1992] 

A path within a graph can be defined as following: 

1) for every node X, there is a path from X to X 

2) for every node X, Y, and Z, if there exists an edge between X and Z 

and a path between Z and Y, then there exists also a path between X 

and Y. 

This can be formulated using predicate logic as (where the predicate P(x,y) 

means “there exists a path from x to y” and E(x,y) “there exists an edge 

between x and y): 

 
x P( x , x)

xy (z (E( x, z)  P( z, y))  P( x, y))
 

Transforming the formula into a set of clauses gives: 

 
x P( x , x)

xyz (E( x, z )P(z, y) P( x , y))
 

Since we have only Horn clauses, the logic program is 
 

 p(X,X) :- 

 p(X,Y) :- e(X,Z)  p(Z,Y) 

 

To get a complete example, we need a concrete (directed) graph. Suppose, 

Figure 3 is our example graph 

 

a

b

d

c

e  

Figure 3 

The graph can be added to the knowledge base by adding the following facts to 

the logic program: 
 

 e(a,b) :- 
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 e(a,c) :- 

 e(b,c) :- 

 e(b,d) :- 

 e(c,d) :- 

 e(c,d) :- 

 e(d,e) :- 

 e(e,a) :- 

 

Now we may formulate our queries: 

1) Is there a path from a to e? 

2) Is there a node X that can be reached from a? 

3) Is there a node X from which there is a edge going to d and e? 

The three queries could be formulated as following: 
 

1) :- p(a,e) 

2) :- p(a,X) 

3) :- e(X,d) e(X,e) 

 

The deduction tree of the first query is shown in Figure 4. To prove p(a,e) we 

try first the rule p(X,X). Since X cannot be bounded this rule fails. Therefore, 

we try the rule p(X,Y) :- e(a,Z) p(Z,e). Now we need to prove e(a,Z) which 

succeeds with Z=B or Z=c. If we choose Z=c we need to prove p(c,e). To prove 

p(c,e) we try again first p(X,X). Since this fails, we try e(c,U) p(U,e). Both 

goals can only succeed if U is bounded to e. The deduction tree is constructed 

dynamically. Figure 4 shows only the state of the last binding.  

 

p(a,e)

p(a,a)

{X=a}

e(a,Z)  p(Z,e)

{X=a,Y=e}or

fail

{Z=b}

e(a,Z)

{Z=c}

and

or

e(a,b) e(a,c)

.... success

p(c,e)

p(c,c) e(c,U)  p(U,e)

or

fail

{U=d}

e(c,U)

{U=e}

and

or

e(c,d) e(a,c)

fail success

p(e,e)

success

 

Figure 4 
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Of course, the logic program gives us only a Yes-or-No answer depending 

whether the goal was proved or not. The path itself cannot be returned by this 

program. If, however, we collect the bindings, we would be able to return the 

path itself (see below). 

EXAMPLE 2: ADDITION [DUFFY D., 1991] 

The addition can be defined as following 

 
x 0  x

if x  y  z  then  x  y1  z 1
      (1) 

In first order logic this may be stated as 

 
x P( x , 0, x)

xyz (P( x, y, z) P( x, s( y), s( z))
     (2) 

where the predicate P(x,y,z) means “x+y=z”, and the function s is the successor 

function s(x)=x+1. 

Stated as a logic program, the addition can be defined as 
 

 plus(X, 0, X). 

 plus(X, s(Y), s(Z) :- plus(X, Y, Z) 

 

(where we use “plus” for the predicate P and “s” for the successor function). 

 

We are now able to query the knowledge base. For example: “Is there any 

number such that the addition of 3+4 is the same as the addition 2+5”. Stated in 

first order logic, this is: 

 x (P(3,4, x) P(2,5, x))  

In first order logic when using resolution, one has to add the negation of this 

clause to the knowledge base, which is 

 x (P(3,4, x) P(2,5,x))  or in Skolem normal form 

 x (P(3,4, x)P(2,5,x))  

The clause has no positive literal, therefore it can be represented as a goal in 

logic programming as 

 
 ?: plus(3,4,X), plus(2,5,X) 

 

We should keep in mind, what the objective of resolution is in logic: The 

objective is the prove a formula, that is to prove the inconsistency of the 

knowledge base together with the negation of the query. Therefore, the proof 

will only return 'yes' or 'no' saying that the formula was proved or disproved. 

The query of our example 
 

 ?: plus(3,4,X), plus(2,5,X) 

 

would return only “yes: there is a number such that it is the addition of 3+4 and 
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2+5. What the number actually is, cannot be determinate by the proof itself. 

EXAMPLES 3: CHEMICAL SYNTHESIS PROBLEM (CHANG/LEE P.21) 

The logical formulation of this problem can be found in Hürlimann 1993b. 

Here is the corresponding logic program: 
 

 Mg :- MgO, H2 

 H2O :- MgO, H2 

 CO2 :- C 

 CO2 :- O2 

 H2CO3 :- CO2 

 H2CO3 :- O 
 MgO :- 

 H2 :-  

 O2 :-  

 C :-  

 :- H2CO3 (goal) 

 

The deduction tree is shown in Figure 5. 

 

H2CO3

H2CO3:-CO2

CO2

CO2:-O2CO2:-C OR

C O2

C:-

OK

O2:- 

OK

OR H2CO3:-H2O

H2O

H2O:-MgO,H2

AND

MgO H2

MgO:-

OK

H2:-

OK
 

Figure 5: SLD-resolution, deduction tree 

EXAMPLE 4: QUICKSORT 

The Quicksort can be defined as following: 

1) A list of zero elements is always sorted 

2) A list X of more than zero elements is sorted if the list is partitioned 

into two sub-lists sorted U and V such that U contains only 

elements less or equal to an element Y and V contains only 

elements greater than Y and the resulting sorted list is a 

concatenation of U then the element Y and finally the sub-list V. 

It is remarkable that the following logic program defines completely the sorting 
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routine!  
 

sortQ(nil, nil) :- 

sortQ(X.Y, Z) :- partition(X, Y, U, V)  sortQ(U, U1)  sortQ(V, V1)  append(U1, 

Y.V1, Z) 

 

(The syntax X.Y is a term. It means that X.Y is a list such that X is the first 

element and Y is the rest of the list). 

EXAMPLE 5: KNAPSACK (SPERSCVHNEIDER AL. P.207) 

The predicate packable(List,cap) is true iff a finite list (v1, v2, v3,..., vn) of 

numbers and a number cap and a sequence (b1, b2, b3,..., bn) with bi{0,1} fulfill 

the following equation 

 b1v1+b2v2+...+bnvn = cap 

The Knapüsack problem can be formulated as 
 

packable([],0) 

packable(V.Rest,Cap) :- less(Cap,V) packable(Rest,Cap) 

packable(V.Rest,Cap) :- less(V,Cap) packable(Rest,Cap) 

packable(V.Rest,V) :- packable(Rest,V) 

packable(V.Rest,Cap) :- less(V,Cap) minus(Cap,V,Capnew) packable(Rest,Capnew) 

packable(V.Rest,V) :- packable(Rest,0) 

 

(In the LPL constraint language we would write: 

 PROVE knapsack: SUM{i} a*x = b; 

or as predicate 

 knapsack(a{i},x{i},b) : SUM{i} a*x = b;  (* or *) 

 knapsack(a{i},x{i},b) : SUM{i} a*x =~ b;  (* or *) 

one cannot got it cheaper!) 

 

RELATIONAL ALGEBRA (CALCULUS) 

A database is a storehouse of associated information about a world. A “world” 

is made up of entities and relations between them. Each entity may contain 

several attributes. The entity-relationship model (E-R model) is a high-level 

representation of a database. An example is shown in the Figure 6. 
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N

1

Pet

Owns

Person

Name Adress City

Petname Type

Attributes

Entity

Relationship

Entity

Atrributes
 

Figure 6 

A relational model which is another representation scheme of a database can be 

developed from a E-R diagram. Both entities and relationship becomes 

relations and the attributes becomes the fields. A relational database consists 

of collections of relation tables. A relation is a subset of A1A2A2...An 

where Ai for i={1...n} is the domain of the i-th attribute within the relation. 

This is called an n-ary relation. An individual row in the table is called a tuple. 

Several operation can manipulate such tables. 

1) A selection operation creates a new table made up of those tuples 

(rows) that satisfy a certain property. 

2) A projection operation selects some columns (attributes) from the 

table (while eliminating duplicate tuples). 

3) The Cartesian product operation is performed on two relations. If 

the arity of the two relations are n and k, then the Cartesian product 

is a new table with arity n+k. 

4) The set-difference operation is defined on two relations R and S of 

the same arity. It is a new table that contains the set of tuples in R 

but not in S. 

5) The set-union operation also defined on two relations of the same 

arity is a new relation of all tuples in both relations. 

A calculus that contains at least this five operations is called complete (also 

called the relational calculus) (see Ullman for a more extensive discussion). 
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Several operators extend a database management language which do not 

enhance the expressive power of the calculus. A example is the join operation 

that can be performed on two relations with a common attribute. It forms the 

Cartesian product of all n-tuples from the first with all k-tuples in the second 

relation to form a new relation of n+k-tuples and then selects the subset of 

those where the common attribute has the same value, writing the result as a set 

of (n+k-1)-tuples (since the common attribute is written only once). 

 

In the database paradigm one often encounters the concept of view. A view is a 

relation that is not explicitly stored in the database, but that can be produced by 

means of the operators of relational calculus. The relational calculus is not very 

powerful. It is, for example, not possible to produce the transitive closure from 

a table. Relational calculus can be simulated by logic programming. On the 

other hand, it provides an (often more efficient) alternative to SLD-resolution 

for a class of logic programs. An example will make the point clear. 

EXAMPLE 5: A SMALL DATABASE  

a database for a dating agency (Spencer-Smith R. p.108ff). A dating agency has 

stored the knowledge of the clients in three database tables as following: 

 

PERSON: 

 name sex build character age 

 John m large shy mature 

 Mary f medium extrovert young 

 ......     

 

PREFERS: 

 name build character age 

 mary large extrovert young 

 john small,medium (any) young,mature 

 ......    

 

LIKES: 

 name music sport rec 

 john jazz swimming cinema 

 mary classical,jazz swimming travel,cimema 

 .....    
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The problem now is to define two queries which extract all suitable persons 

that meet the requirements for all clients and to define a match relation. 

The two SQL queries might be formulated as following: 

 

SQL Queries:  (Pius fragen) 

 suits 

 match .... 

 

The same knowledge can be formulated in Prolog as following: 
 

person(john,m,large,shy,mature). 

person(mary,f,medium,extrovert,young). 

prefers(mary,large,extrovert,young). 

prefers(john,X,_,Y) :-  (X=small;X=medium),(Y=young; Y=mature). 

likes(john,jazz,swimming,cinema). 

likes(mary,X,Y,Z) :-  (X=classical; X=jazz), Y=swimming, (Z=travel; Z=cinema). 

opp(m,f). opp(f,m). 

 

suits(B,A) :- 

   person(A,X,_,_,_), 

   prefers(A,Build,Char,Age), 

   person(B,Y,Build,Char,Age), 

   not(X=Y). 

match(A,B) :- 

   person(A,X,_,_,_), 

   likes(A,Music,Sport,Rec), 

   opp(X,Y), 

   person(B,Y,_,_,_), 

   likes(B,Music,Sport,Rec). 

ideal(A,B) :- match(A,B), suits(A,B), suits(B,A). 

 

The same can be modeled using LPL as following 
 

SET p=/john,mary/; s=/m,f/; b=/large,medium/; c=/shy,extrovert/; 

a=/mature,young/; 

    m=/classical,jazz/; s=/swimming/; r=/travel,cinema/; 

 

    person(p,s,b,c,a) = /john m large  shy       mature 

                         mary f medium extrovert young/; 

    prefers(p,b,c,a) =  / mary large extrovert young 

                          john (small medium) (*) (young mature) /; 

    likes(p,m,s,r) = / 

         john jazz swimming cinema 

         mary (classical jazz) swimming (travel cinema) /; 

    opp(s,s) = /m f , f m/; 

 

    suits(p2=p,p1=p) = 

      Exist(x=s,y=s,b,c,a)  

        (Exist(d1=b,d2=c,d3=a) person(p1,x,d1,d2,d3) 

         and prefers(p1,b,c,a) and person(p2,y,b,c,a) 

         and not (x=y)); 

    match(p1=p,p2=p) = 

      Exist(x=s,y=s,m,s,r) 

         (Exist(d1=b,d2=c,d3=a) person(p1,x,d1,d2,d3) 

          and likes(p1,m,s,r) and opp(x,y) 

          and Exist(d1=b,d2=c,d3=a) person(p2,y,d1,d2,d3) 

          and likes(p2,m,s,r)); 

    ideal(p1=p,p2=p) = match(p1,p2) and suits(p1,p2) and suits(p2,p1); 
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DEDUCTIVE DATABASES 

Lloyd S. 18 Definition. typed first order theory (=many-sorted theory) 

 

RECURSIVE DATA STRUCTURE IN LOGIC PROGRAMMING 

A recursive data structure is a data type which contains recursively objects of 

the same type. A list is a typical recursive structure. Logic programming only 

allow terms as representations of individuals. But it is not very hard to 

represent lists as terms. A syntax of the term is slightly extended. The list of 

three constant terms is represented by [a,b,c] and the list of variables is written 

as X.Y where X is the first element of the list and Y is the rest. Using this 

syntax it is easy to expressed the two LISP functions car and the cdr of a list: 

 car(Head,Head.Tail) 

 cdr(Tail,Head,Tail) 

The query :- cdr(X,[a,b,c]) , for example,  is true if and only if X=[b,c]. 

 

Let us return to the example of paths in a graph. Above wew defined a path as 
path(X,X) :- 

path(X,Y) :- edge(X,Z) path(Z,Y) 

 

This predicate can only indicate whether there is a path from some node to 

others or not. The path itself cannot be returned. Furthermore, if the path 

predicates goes into a loop, because the graph has some cycles, this could not 

be detected, because the path cannot remember nodes that have already been 

visited. To prevent such a difficulty the predicate path is defined differently as: 
 path(X,Y) :- path(X,Y,[X]) 

 path(X,X,Visited) 

 path(X,Y,Visited) :- edge(X,Z) 

                      not member(Z,Visited) 

                      path(Z,Y,Z.Visited) 

 member(X,X.Y) 

 member(X,Y.Z) :- member(X,Z) 

 

But this program still does not return the pathn itself. To return the path itself 

as a list we use the following definition 
 

 path(X,Y,Path) :- path(X,Y,[X],Path) 

 path(X,X,Visited,Visited) 

 path(X,Y,Visited,Path) :- edge(X,Z) 

                           not member(Z,Visited) 

                           path(Z,Y,Z.Visited,Path) 

 

(=searching in a state space using a transition graph! (see Nilsson al 1990). 

LOGIC PROGRAMMING AND FUNCTIONAL PROGRAMMING 

The principle of pure functional programming could be stated as following: 



 22 

“The value of an expression depends only on the values of its subexpressions, 

if any.” Logic programming (LP) shares many roots with functional 

programming (FP): 

- both manipulate values rather than assignable cells 

- both use heavily recursion 

- both have ample opportunities for execution parallelism. 

But they are also very different on several fundamental aspects: 

- concerning the variables: 'call-by-value' binding versus unification 

- concerning abstraction: higher order program entities (in FP) versus 

inherently non-deterministic execution (in LP). 

- concerning input/output: one-directional (FP), does matter (LP). 

To understand the last difference let's take an example.  

EXAMPLE 1: APPEND 

The list operator APPEND can be implemented in LP as following 
 

append(nil, Y, Y) :- 

append(A.X, Y, A.Z) :- append(X, Y, Z) 

 

In FP we have the following program 
 

append(nil, Y) = Y 

append(A.X, Y) = A.append(X, Y) 

 

The differences might seem cosmetic. There is a fundamental distinction 

however. While the functional program can only query in one direction, the 

logic program can be queried in all directions. The following query in LP is just 

fine in both paradigm 
 

:- append([1,2], [3,4,5], L)        returns L = [1,2,3,4,5] 

 

But now consider the query which says find the list which produces together 

with [1,2] the list [1,2,3,4,5]: 
 

:- append([1,2], L, [1,2,3,4,5]     returns L = [3,4,5] 

 

which in fact is not an 'append' but a split of a list. This query is just fine in LP, 

but there is no possibility to make the query in FP. In FP a new function must 

be written. The query 
 

:- append(X, Y, [1,2,3,4,5]) returns  

 

is even more interesting. It says find all partitions of the list [1,2,3,4,5]. The 

result is the set of assignments: 
 

{X=[], Y=[1,2,3,4,5]} 

{X=[1], Y=[2,3,4,5]} 
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{X=[1,2], Y=[3,4,5]} 

{X=[1,2,3], Y=[4,5]} 

{X=[1,2,3,4], Y=[5]} 

{X=[1,2,3,4,5], Y=[]} 

 

Hence the append predicate in LP can be used to appends or to split two lists. 

Logic programs are indifferent about the fact what is input and what is output. 

This is very different in functional programming. Three different functions 

would have been needed to define it in FL. 

A second difference is that in logic programming the results need not be totally 

grounded. Consider the query append(X, Y, [1,2,3,4,5] again. Another output 

of the query could have been: {X=[1,2,3,4,5]\Y}.  

EXAMPLE 2: ADD 

A second example illustrates the point again: define a function (predicate) for 

addition. In FP (Scheme) we have 
 

(define (add x y) 

  (+ x y)) 

 

In LP (Prolog III) we can write (predicate begin with an uppercase, variables 

with a lowercase letter): 
 

Add(x,y,z) -> , {x=y+z}; 

 

It is easy to query now in all directions. For example the three queries 
 

Add(x,2,3); 

Add(5,x,3); 

Add(5,2,x); 

 

yield the results {x=5}, {x=2}, and {x=2} respectively. The query 
 

Add(x,y,2); 

 

is even more interesting. Prolog III returns the linear system 
 

{x = y_1 + 2, y = y_1}  

{x = y_2 + 2, y = y_2}  

 

BEISPIEL 3: FIBONACCI 

Fibonacci numbers are defined recursively as 

 F(1) = 1,    F(2)=1,    F(n) = F(n-2)+F(n-1)  for n>2 

which produces the sequence: 1, 1, 2, 3, 5, 8, 13, 21, ... 

1) There exists a closed form which finds the nth Fibonacci number  

 F(n) 
1

5

1 5

2




 




n


1

5

1 5

2




 




n

 

 

2) the Loop to find the n-th number: 
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F0 := 0;    F1 := 1; 

for i := 0 to n do begin 

  temp := F1;  F1 := F0 + F1;  F0 := temp; 

end; 

return(F0); 

 

3) as functional program 
 

(function Fib (n) 

  (if n<=2 then return(1) else return(Fib(n-1)+Fib(n-2)) 

 

 

4) logic program 
 

fib(1,1) :- 

fib(2,1) :- 

fib(X,Y) :- Y=V+W, Fib(X-1,V), Fib(X-2,W) 

 

5) as linear equation system (using Gaussian elimination): 
 

F1 = 1 

F2 = 2 

Fn = Fn-1 + Fn-2   for n>2 

 

FP is based on the lambda calculus, LP on the first order logic theory. Both 

have there advantages and disadvantages. But the most striking difference is 

their treatment of directionality. 

 

 

 

example: path in a graph (Schmitt, p.2ff) 

 

Zur Negation: 

 A :- 

 B :- A 

 :- not B 

Wie versucht Prolog dieses Problem zu lösen. Wir haben hier keine 

Hornklausel mehr. Prolog tut also zunächst so als ob not B nicht negiert wäre. 

Es versucht als B abzuleiten. Da dies gelingt, kann not B offenbar nicht 

abgeleitet werden. Das bedeutet aber nicht, dass not B falsch (unerfüllbar) ist, 

es könnte ja auch erfüllbar sein. Da Prolog aber nur eine positive (yes) oder 

negative Antwort (fail) gibt.... 

In dieser close world assumtion wird jedes Prädikat, das nicht ableitbar ist, als 

falsch angenommen. (:- not B is not a horn clause because we have to read it as 

F :- not B where F is the (positve) False litteral  and it reads as F or B which 

contains two positive literals. 
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LOGIC PROGRAMMING AND INTEGER PROGRAMMING 

Any (pure) logic program can be reformulated as an integer program. An 

integer program is a linear inequation system with a minimizing (linear) 

objective function which can be formulated as 

  

Ax  b

x  0

minimize  cx

 

where A is a mxn matrix of integers, x is a unknown n-vector where the 

elements are elements of {0,1}, b is an m-vector of integers, and c is a n-vector 

of integers. 

The whole reformation procedure is described in another paper (Hürlimann 

1993a). To take two simple examples, we compare the formulations. 

 

Example 1: Suppose we have the following knowledge base which contains a 

simple fact and a rule: p, p q  . We wanted to prove q. The following table 

compares the three formulations: logic, logic program, and inter program. 

 

Notation in logic 

(set of clauses) 

logic program 

(notation in PROLOG) 

inter (0-1) programming 

formulation 
p

q  p 

q 

 

p :      (a fact )

q : p       (a rule)

: q       (a goal)

 

p  1

q  p

minimize  q

 

 

Using resolution, it is easy to prove the inconsistency: the resolvent of the first 

and the second clause is q. The resolvent of q and the third clause is the empty 

clause and we have proved the inconsistency. Using SLD-resolution in the 

logic program, we unify the tail of the goal with the rule. The new goal is :-p. 

Unify the new goal with the first fact produces the empty clause. The integer 

program is trivial: both variables are fixed at 1. Therefore, to minimize q means 

to assign the minimal possible value (which is 1) to q. Since we interpret the 

value 1 as TRUE and the value 0 as FALSE. q has turned out TRUE. This can 

be interpreted as proof of q. 

 

Example 2: Suppose our knowledge base contains the two clauses: 

{p(a),x(p(x) q(x))}. We wanted to prove q(a). Again the three 

formulation are summarized in a table: 
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Notation in logic 

(set of clauses) 

logic program 

(notation in PROLOG) 

inter (0-1) programming 

formulation 
p(a)

x( p(x) q (x))

q(a)

 

p(a) :

q(X) : p(X)

: q(a )

 

pa 1

qi  pi   for all iD

minimize   qa (aD)

 

 

Again, resolution is trivial in logic and in logic programming formulation and 

needs two steps. To formulate the model in inter programming we need 

explicitly a domain D. This is the closed world assumption in logic 

programming. In integer programming, all variables are fixed to 1 and the 

solution is trivial, since qq is also fixed to 1. 

 

The two example are instructive but not very interesting. More real live 

examples can be found in my paper [Hürlimann 1993a]. The translation of 

logical programs into IP models may have four advantages: 

1) If the all clauses of the logic program are Horn-clauses then the 

corresponding IP model can be solved using the LP-relaxation. 

2) The clauses need not to be Horn-clauses, they need even not be 

clauses, any logical statement can be translated into one or several 

IP statement. 

3) Mathematical and logical knowledge can be mixed within the same 

paradigm. 

4) Non-monodonic logic stetement canb also be treated as linear 

mathematical statements (Yager). 

 

 

CONSTRAINT LOGIC PROGRAMMING (CLP) 

The paradigm of logic programming has been extended to constraint logic 

programming by several authors. The development was triggered by the request 

– or the necessity – to manipulate conveniently some data structures in logic 

programming. In the first place one should think of numbers. Numbers cannot 

be manipulated conveniently within logic programming. Several languages 

such as Prolog have included some ad-hoc predicates (addition, equality, 

greater, less and some other operators) to handle calculation. But apart from its 

being a makeshift solution, it cannot be used with free variables. The following 

Prolog program for faculty makes this point clear 
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fac(0,1). 

fac(N,F) :- M is N-1, fac(M,G), F is N*G. 

 

Any query of the form fac(n,F) where n is a number can be answered 

successfully. But the query fac(X,5040) will produces an error message, 

because the predicate “M is N-1”, which is evaluated first, cannot assign the 

variable M since N is free. 

The query of how many rabbits and pigeons are needed to get 12 heads and 34 

legs, cannot be answered easily by Prolog. But formulating this problem as a 

linear program is easy. If the number of rabbits is R and the number of pigeons 

is P then the linear program is: 
 

P ≥ 0 

R ≥ 0 

P + R = 12 

2*P + 4*R = 34 

 

An Prolog III program is now 
 

 atom :- literals '{' constraints '}' 

 

 

PrologIII 

 

CHIP 

 

 

 

Finite domain constraint satisfaction problems (CSP) can be described by a set 

of variables   x  x j ( j {1K m})  to be instantiated on a finite domain Dj and 

which are subject to a set of constraints   Ci (x) (i {1K n}) . Finite domain 

consrait problems are are simple to formulate using mathematical and logical 

formalism. There are plenty of applications for such problems: graph coloring, 

VLSI routing, hardware design, many operational research problems (like 

cutting stock problems, the traveling salesperson problem, the warehouse 

problem, scheduling problems) and many other combinatorial problems. Most 

of these problems are NP-complete. CSP-problems can be depicted as labelled 

hypergraphs ...... Dechter Pearl.... 

 

 

 

 

LOGIC PROGRAMMING AND LPL 
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Deklarative Sprache: what to do? Describe you problem! 

Imperative (prozedurale): How to do? Give me the sequence of instructions! 

That's the common view! But it is misleading! 

Interactive (interpretiert): query Abfrage --- batch: (compiliert) 

Prolog only performs a mechanical derivation 

 

EXAMPLE 1: THE SOLAR SYSTEM (SPENCER-SMITH R. P.74FF) 

(a simple knowledge base) 

natural language formulation 
Venus is a planet 

The Earth is a planet 

The sun is a star 

The moon orbits around the Earth 

All planets orbit around the sun 

A moon orbits around a planet 

The solar system is geocentric if the sun orbits around the earth 

The solar system is heliocentric if the earth orbits around the sun 

A satellite is a heavenly body which orbits around another 

A heavenly body is a star, a planet, or a moon 

Queries: 
Is Venus a planet? 

What are the planets? 

What orbits the earth? 

What orbits around what? 

Is the solar system geocentric? 

Is there an object that orbits another which orbits the sun? 

predicate logical formulation 
planet(Venus) 

planet(the_earth) 

star(the_sun) 

orbits(the_moon,the_earth) 

x (planet(x)  orbits(x,the_sun)) 

x ((y (orbits(x,y)  planet(y)))  moon(x)) 

      { Skolem form is: xy (¬orbits(x,y)  ¬planet(y)  moon(x)) } 

geocentric(the_solar_system)  orbits(the_sun,the_earth) 

heliocentric(the_solar_system)  orbits(the_earth,the_sun) 

x (heavenly_body(x)  star(x)  planet(x)  moon(x)) 

x (satellite(x)  y (heavenly_body(x)  heavenly_body(y)  orbits(x,y))) 

     { Skolem form is: xy (satellite(x)  ¬heavenly_body(x)  ¬heavenly_body(y) 

                             ¬orbits(x,y)) } 
 

Prolog formulation 
planet(venus). 

planet(the_earth). 

star(the_sun). 

orbits(the_moon,the_earth). 

orbits(X,the_sun) :- planet(X). 

moon(X) :- orbits(X,Y), planet(Y). 

geocentric(the_solar_system) :- orbits(the_sun,the_earth). 

heliocentric(the_solar_system) :- orbits(the_earth,the_sun). 

heavenly_body(X) :- star(X); planet(X); moon(X). 

satellite(X) :- heavenly_body(X), heavenly_body(Y), orbits(X,Y). 
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Queries: 
?-  planet(venus) 

?-  planet(X) 

?-  orbits(X,the_earth) 

?-  orbits(X,Y) 

?-  geocentric(the_solar_system) 

?-  orbits(X,Y), orbits(Y,the_sun) 

LPL formulation 
SET 

x; planet(x); star(x); orbits(x,x); moon(x); s; geocentric(s); heliocentric(s); 

heavenly_body(x); satellite(i=x); 

    ! x = /venus, the_earth, the_sun, the_moon/;  needs not to be defined! 

 

planet(x) = /venus, the_earth/; 

star(x) = /the_sun/; 

orbits(i,j) = (i='the_moon' and j='the_earth') or (planet(i) and j='the_sun'); 

     !orbits(i,j) = /the_moon the_earth/ or (planet(i) and j='the_sun');! 

moon(i) = Exist(j=x) (orbits(i,j) and planet(j)); 

s = /the_solar_system/; 

geocentric(s) = orbits('the_sun','the_earth'); 

heliocentric(s) = orbits('the_earth','the_sun'); 

heavenly_body(x) = star or planet or moon; 

satellite(i) = heavenly_body(i) and Exist(j=x) (heavenly_body(j) and 

orbits(i,j)); 

Queries: 
PRINT:     planet('venus'); 

PRINT(x):  planet; 

PRINT(x):  orbits(x,'the_earth'); 

PRINT(i=x,j=x):  orbits(i,j); 

PRINT:       geocentric('the_solar_system'); 

PRINT(i=x):  Exist(j=x) (orbits(i,j) and orbits(j,'the_sun')); 

 

EXAMPLE 2: BLOOD TRANSFER KNOWLEDGE (SPENCER R. P.92FF): 

(negation) 

 

Natural language formulation 
blood from group agglutinates blood from groups 

 A     B, AB 

 B     A, AB 

 AB     (none) 

 O     A, B, AB 

 

Jones has blood group B. 

Smith has blood group O. 

A person (the donor) can donate blood to another (the recipient) if the blood 

from the recipient does not agglutinate the blood from the donor. 

Queries: 
Does A agglutinate O? 

Does A not agglutinate O? 

Can Jones donate his blood to smith? 

Predicate logical formulation 
agglutinates(a,b) 

agglutinates(a,ab) 

agglutinates(b,a) 

agglutinates(b,ab) 

agglutinates(o,a) 

agglutinates(o,b) 

agglutinates(o,ab) 
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type(jones,b) 

type(smith,o) 

vw (can_donate(v,w) <-- (xy (type(v,x)  type(w,y)  ¬agglutinates(y,x)))) 

    { Skolem form is : vwxy (can_donate(v,w)  ¬type(v,x)  ¬type(w,y) 

                               agglutinates(y,x))   } 

Note that the last formula is not a Horn clause! 

Prolog formulation 
agglutinates(a,b). 

agglutinates(a,ab). 

agglutinates(b,a). 

agglutinates(b,ab). 

agglutinates(o,a). 

agglutinates(o,b). 

agglutinates(o,ab). 

type(jones,b). 

type(smith,o). 

can_donate(V,W) :- type(V,X), type(W,Y), not agglutinates(Y,X). 

 

Although the last rule is not a Horn-clause, Prolog will accept and evaluate it. 

The reason lays in the order in which Prolog evaluates (or better: unifies) the 

predicates: from left to right. Since type(V,X) and type(W,Y) are unified before 

not agglutinates(Y,X), the variables Y and X are bound before not 

agglutinates(Y,X) will be unified: there is no variable left to be bound. Hence, 

we have do be careful on the order of the literals within the clauses. The same 

rule declared as 
   can_donate(V,W) :- not agglutinates(Y,X), type(V,X), type(W,Y). 

would not be accepted by most Prolog. 

 

   Queries: 
?-  agglutinates(a,o) 

?-  not agglutinates(a,o)       ; Prolog fails to give the correct answer! 

?-  can_donate(jones,smith) 

LPL formulation 
SET b=/a,b,ab,o/; p=/jones,smith/; 

agglutinates(b,b) = / a (a,ab) , b (a,ab) , o (a,b,ab) /; 

type(p,b) = / jones b , smith o /; 

can_donate(v=p,w=p) = Exist(x=b,y=b) (type(v,x) and type(w,y) and not 

agglutinates(y,x); 

   Queries: 
PRINT:  agglutinates('a','o'); 

PRINT:  not agglutinates(a,o);          ! LPL gives the correct answer! 

PRINT:  can_donate('jones','smith'); 

 

EXAMPLE 3: ADVICE ON NUTRITION (SPENCER R. P.102FF): 

Prolog 
pregnant(mary). 

pregnant(jane). 

has_cold(john). 

anaemic(jo). 

has_rickets(jim). 

deficient_in(fred,vitamin_A). 
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found_in(vitamin_A,carrots). 

found_in(vitamin_A,X) :- oily_fish(X). 

found_in(vitamin_A,X) :- green_leafy_veg(X). 

found_in(folic_acid,oranges). 

found_in(folic_acid,X) :- pulse(X). 

found_in(folic_acid,X :- green_leafy_veg(X). 

found_in(vitamin_C,oranges). 

found_in(vitamin_D,X) :- oily_fish(X). 

found_in(vitamin_D,eggs). 

found_in(vitamin_E,X) :- green_leafy_veg(X). 

found_in(calcium,X) :- pulse(X). 

found_in(iron,spinach). 

green_leafy_veg(lettuce). 

green_leafy_veg(kale). 

green_leafy_veg(parsley). 

pulse(lentils). 

pulse(red_kidney_beans). 

pulse(chick_peas). 

oily_fish(mackerel). 

oily_fish(sardines). 

oily_fish(herring). 

 

needs(X,folic_acid) :- pregnant(X). 

needs(X,vitamin_C) :- has_cold(X). 

needs(X,iron) :- anaemic(X). 

needs(X,Y) :- deficient_in(X,Y). 

needs(X,calcium) :- has_rickets(X). 

needs(X,vitamin_D :- needs(X,calcium). 

 

should_eat(Person,Food) :- needs(Person,Nutrient), found_in(Nutrient,Food). 

LPL formulation 
SET f = /carrots, oranges, eggs, spinach, lettuce, kale, parsley, lentils, 

         red_kidney_beans, chick_peas, mackerel, sardines, herring/; 

    p = /mary, jane, john, jo, jim, fred/; 

    i = /vitamin_A, vitamin_C, vitamin_D, vitamin_E, calcium, iron, folic_acid/; 

 

    pregnant(p) = /mary, jane/; 

    has_cold(p) = /john/; 

    anaemic(p) = /jo/; 

    has_rickets(p) = /jim/; 

    deficient_in(p,i) = /fred vitamin_A/; 

 

    green_leavy_veg(f) = /lettuce, kale, parsley/; 

    pulse(f) = /lentils, red_kidney_beans, chick_peas/; 

    oily_fish(f) = /mackerel, sardines, herring/; 

    found_in(i,f) =  

      (i='vitamin_A' and (f='carrots' or oily_fish or green_leafy_veg)) 

      or (i='folic_acid' and (f='oranges' or pulse or green_leafy_veg) 

      or (i='vitamin_C' and f='oranges') 

      or (i='vitamin_D' and (oily_fish or f='eggs')) 

      or (i='vitamin_E' and green_leafy_veg) 

      or (i='calcium' and pulse) 

      or (i='iron' and f='spinach'); 

    needs(p,i) = (pregnant and i='folic_acid) 

      or (has_cold and i='vitamin_C') 

      or (anaemic and i='iron') 

      or deficient_in 

      or (has_rickets and i='calcium'); 

    needs(p,i) = (if,i='vitamin_D',needs(p,'calcium'),needs(p,i)); 

 

    should_eat(p,f) = Exist(i) (needs(p,i) and found_in(i,f)); 

 

EXAMPLE 4: SIMPLE LIST IN PROLOG: A SIMPLE GRAMMAR 

Prolog 
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sentence(List) :- noun_phrase(N), 

                  verb_phrase(V), 

                  append(N,V,List). 

noun_phrase(X) :- p_name(X). 

noun_phrase(List) :- det(D), 

                     c_noun(C), 

                     append(D,C,List). 

verb_phrase(X) :- intrans(X). 

verb_phrase(List) :- trans(V), 

                     noun_phrase(N), 

                     append(V,N,List). 

det([the]). 

det([every]). 

det([a]). 

c_noun([man]). 

c_noun([woman]). 

c_noun([city]). 

c_noun([country]). 

intrans([walks]). 

intrans([exists]). 

trans([is]). 

trans([loves]). 

p_name([john]). 

p_name([mary]). 

p_name([london]). 

p_name([england]). 

(Note: the list notation [] is necessary, since the parameters to append are lists: 

append([],[],[]). 

Queries: 
?-  verb_phrase([loves,every,woman]) 

?-  sentence([john,is,a,man]) 

LPL 
SET p = /john mary london england/; 

    d = /the every a/; 

    c = /man woman city country/; 

    t = /is loves/; 

    i = /walks exists/; 

    n = p union (d,c); 

    v = i union (t,n); 

 

    det(d) = /the every a/; 

    p_name(p) =  /john mary london england/; 

    c_noun(n) = /man woman city country/; 

    trans(t) = /is loves/; 

    intrans(i) = /walks exists/; 

 

    sentence(n,v) = noun_phrase(N) and verb_phrase(V); 

    noun_phrase(n) :- p_name(p) or det(d) and c_noun(c); 

    verb_phrase(v) :- intrans(i) or trans(t) and noun_phrase(n); 

 

?:  verb_phrase('loves every woman'); 

?:  sentence('john is a man'); 

 

 

EXAMPLE 5: A NUMERIC EXAMPLE: 
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EXAMPLE 7A: ON SIMPLE RECURSION: 

  married(X,Y) :- married(Y,X). 

  married(fred,jane). 

  ?- married(jane,fred)   ; will not return, infinite recursion!! 

 

But the following is a correct formulation in Prolog 
  married(fred,jane). 

  married(X,Y) :- married(Y,X). 

  ?- married(jane,fred)   ; will not return, infinite recursion!! 

Another solution is 
  wedded(fred,jane). 

  married(X,Y) :- wedded(X,Y). 

  married(Y,X) :- wedded(X,Y). 

LPL 
SET i; 

    married(i,i) = /fred jane/; 

    married(i,j) = if(i<=j,married(i,j),married(j,i); 

or 
SET 

  wedded(i,i) = /fred jane/; 

  married(x,y) = wedded(x,y) or wedded(y,x). 

EXAMPLE 7B: ON SIMPLE RECURSION: 

get_to 

 

 

EXAMPLE 7C: REAL RECURSION: THE TOUR OF HANOI 

 

 

 

EXAMPLE MIT TURBO PROLOG 

Turbo Prolog formulation 
/* 

   Turbo Prolog 2.0, Answer to first Exercise on page 121. 

   Copyright (c) 1986, 88 by Borland International, Inc 

*/ 

 

Domains 

    person = symbol 

 

Predicates 

    special_taxpayer(person) 

    average_taxpayer(person) 

    is_a_citizen(person) 

    married(person,person) 

    has_kids(person,integer) 

    has_two_kids(person,integer) 

    makes_bucks(person,integer) 

    right_income(person,integer) 
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Clauses 

    is_a_citizen(tom). 

    is_a_citizen(albert). 

    is_a_citizen(suzie). 

    is_a_citizen(bonnie). 

    is_a_citizen(Person):-  

        married(Person,Spouse), 

        is_a_citizen(Spouse),!.   /* The cut must be placed here to prevent 

                                     unnecessary backtracking. To see this,  

                                     trace thru the program, first with 

                                     and then without the cut.                   

                                  */ 

    married(tom,chris). 

    married(albert,rachel). 

    married(fred,suzie). 

    married(duke,joanne). 

 

    has_kids(albert,3). 

    has_kids(suzie,2). 

    has_kids(fred,2). 

    has_kids(bonnie,1). 

    has_kids(tom,0). 

 

    has_two_kids(Person,X):- 

        has_kids(Person,X), 

        X=2.                    

 

    makes_bucks(tom,250). 

    makes_bucks(fred,3000). 

    makes_bucks(albert,1500). 

    makes_bucks(suzie,0). 

 

    right_income(Person,N):- 

        makes_bucks(Person,N), 

        500 <= N,                

        N <= 2000. 

 

    average_taxpayer(Person):- 

        is_a_citizen(Person), 

        right_income(Person,_), 

        has_two_kids(Person,_), 

        married(Person,_), 

        write(Person," is an average taxpayer"). 

 

    special_taxpayer(Person):- 

        not(average_taxpayer(Person)), 

        write(Person," is a special taxpayer"). 

 

Goal 

    special_taxpayer(fred). 

LPL formulation 
set 

    person; 

    special_taxpayer(person); 

    average_taxpayer(person); 

    is_a_citizen(person); 

    married(person,person); 

coef 

    has_kids(person); 

    has_two_kids(person); 

    makes_bucks(person); 

    right_income(person); 

 

set 

    is_a_citizen = /tom albert suzie bonnie/; 

    is_a_citizen(Person)=is_a_citizen and 

        Exist(Spouse=Person) (married(Person,Spouse) and 

        is_a_citizen(Spouse));    
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    married = /tom,chris , albert,rachel , fred,suzie , duke,joanne/; 

coef 

    has_kids = /albert 3 , suzie 2 , fred 2 , bonnie 1 , tom,0/; 

 

    has_two_kids(Person)= 

        has_kids(Person)=2; 

 

    makes_bucks= /tom 250 , fred 3000 , albert 1500 , suzie 0/; 

 

    right_income(Person)= 

        500 <= makes_bucks <= 2000; 

 

    average_taxpayer(Person)= 

        is_a_citizen(Person) and 

        right_income(Person) and 

        has_two_kids(Person) and 

        Exist(Spouse=Person) married(Person,Spouse); 

 

    special_taxpayer(Person):- 

        not(average_taxpayer(Person)); 

 

print: 

    special_taxpayer(fred); 

end 

 

 

 

PROLOG III Version  
/* 

        Le fameux menu equilibre . 

*/ 

 

RepasLeger(h,p,d) -> 

   HorsDoeuvre(h,i) Plat(p,j) Dessert(d,k) 

   {i>=0,j>=0,k>=0,i+j+k<=10}; 

 

Plat(p,i) -> Viande(p,i); 

Plat(p,i) -> Poisson(p,i); 

 

HorsDoeuvre(radis,1) ->; 

HorsDoeuvre(pate,6) ->; 

 

Viande(boeuf,5) ->; 

Viande(porc,7) ->; 

 

Poisson(sole,2) ->; 

Poisson(thon,4) ->; 

 

Dessert(fruit,2) ->; 

Dessert(glace,6) ->; 

 

/* 

        Question 

*/ 

 

RepasLeger(h,p,d); 

 

LPL Version 1 
(* 

        Le fameux menu equilibre . 

*) 

 

SET p = /radis pate boeuf porc sole thon fruit glace /; "plats" 

COEF 

  HorsDoeuvre(p) = / radis 1 , pate 6 /; 

  Viande(p) = / boeuf 5 , porc 7 /; 

  Poisson(p) = /sole 2 , thon 4 /; 

  Dessert(p) = / fruit 2 , glace 6 /; 
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SET 

  Plat(p) = Viande OR Poisson; 

  RepasLeger(h=p,p1=p,d=p) =  

    HorsDoeuvre[h] AND Plat(p1) AND Dessert(d) 

    AND  HorsDoeuvre[h] + Viande(p1) + Poisson(p1) + Dessert(d) <= 10; 

 

(* 

        Question 

*) 

 

PRINT RepasLeger; 

END 

 

Die Ausgabe von LPL ist:  
 

REPASLEGER(P,P,P) 

 {RADIS BOEUF FRUIT} 

 {RADIS PORC FRUIT} 

 {RADIS SOLE FRUIT} 

 {RADIS SOLE GLACE} 

 {RADIS THON FRUIT} 

 {PATE SOLE FRUIT} 

 

 

LPL Version 2 
 

SET p = / radis pate boeuf porc sole thon fruit glace /; "plats" 

    HorsDoeuvre(p) = / radis pate /; 

    Viande(p) = / boeuf porc / 

    Poisson(p) = / sole thon /; 

    Dessert(p) = / fruit glace /; 

    Plat(p) = Viande OR Poisson; 

COEF 

  Calories(p) = / 1 6 5 7 2 4 2 6 /; 

 

SET 

    RepasLeger(HorsDoevre,Plat,Dessert) =  

       SUM(p) Calories <= 10; 

 

(* 

        Question 

*) 

 

PRINT RepasLeger; 

END 

 

 

LPL Version 3 
 

SET p = / radis pate /; 

    q = / boeuf porc / 

    q1 = / sole thon /; 

    r = / fruit glace /; 

    Pl = / boeuf porc sole thon / (* = q UNION q1;   UNION : nicht implementiert 

*) 

COEF 

  HorsDoeuvre(p) = / radis 1 , pate 6 /; 

  Viande(q) = / boeuf 5 , porc 7 /; 

  Poisson(q1) = /sole 2 , thon 4 /; 

  Dessert(r) = / fruit 2 , glace 6 /; 

  Plat(Pl) = Viande(Pl IN q) + Poisson(Pl IN q1); 

 

SET 

    RepasLeger(p,Pl,r) =  

       HorsDoeuvre[p] + Plat(Pl) + Dessert(r) <= 10; 

 

(* 

        Question 
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*) 

 

PRINT RepasLeger; 

END 

 

 

LPL Version 4 
 

SET p = / radis pate boeuf porc sole thon fruit glace /; "plats" 

    q = / HorsDoevre Plat Dessert /; 

    Rel(q,p) = / HorsDoevre (radis pate) , Plat (boeuf porc sole thon) , 

                 Dessert (fruit glace) /; 

COEF   Calories(p) = / 1 6 5 7 2 4 2 6 /; 

 

SET 

    RepasLeger(p,q) =  

       Rel AND SUM(p) Calories <= 10; 

 

PRINT RepasLeger; 

END 

 

 

Predicates can be expressed in LPL at different levels: 

1) as model restrictions: 
 

MODEL plus(X,Y,Z) :- Z = X + Y;  "variables given in a parameter-list") 

MODEL TimeLag{t}(X{t},Y{t}) :- X[t+1] = X[t] + Y[t]; 

 

2) as (logical) variables 
 

VAR path{i,i}; edges{i,i} LOGICAL; 

MODEL A1{i}: path[i,i]; 

      A2{i1,i2} : path[i1,i2]  <-- Exist{i3} (edge[i1,i3]  and  path[i3,i2]; 

 

3) predicates as sets 

example 'plat leger' 

 

Predicates and function 

as predicates 
MODEL plus(X,Y,Z) :- Z = X + Y; 

greater(X,Y) :- X > Y; 

PROVE : greater(X,Y) and plus(X,1,Y); 

as function  
MODEL Z:=plus(X,Y) : Z = X + Y  

PROVE greater(plus(X,1),X) 

EXAMPLE: COST-BASED ABDUCTION [SANTOS 1994] 

Abduction is the problem of finding the best explanation for a given set of 

observations. Suppose, as an example, the following situation: John visits 

Mary's house and finds the place quiet and dark. He concludes that Mary is not 

home. How has he arrived to conclude that? We might formulate his 

knowledge as the following set of rules 

 house-dark  house-quiet   house-dark-quiet 

 light-out  house-dark 
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 no-one-home  blackout   lights-out 

 tv-off  radio-off  house-quiet 

 house-dark  house-quiet   house-dark-quiet 

 no-one-home  no-shows  blackout  tv-off 

 no-one-home  bad-songs  blackout  radio-off 

 

The set of rules can also be formulated as a OR-AND directed acyclic graph as 

following 

 

no-one-home=7 blackout=10 no-shows=6 bad-somngs=3

light-out tv-off radio-off

house-dark house-quiet

house-dark-quiet

AND

AND

HYPOTHESES

OBSERVATION

 

All sorts of hypotheses (the first row) could be articulated and provided with a 

'probability' (or 'cost') (the higher the inprobable). Chains of deduction can be 

made imposing logical rules to get to the observation. To find the most 

'likelihood' expanation, we can minimize the costs over all hypotheses. 

 

It is very easy the formulate the whole model using LPL 

SET nodes; 

  observation{nodes}; 

  hypotheses{nodes}; 

  Anodes{nodes};   (* the AND-nodes *) 

  Onodes{nodes};  (* the OR-nodes *) 

  arcs{nodes,nodes}; (* the arc set of the graph *) 

COEF  cost{hypotheses}; 

VAR x{nodes} BINARY; 

MODEL 

  obser{i=observation}: x[i]=1;   (* all observations are true *) 
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  ANDs{i=Anodes}: AND{j=nodes | arcs[j,i]}  x[j]  IMPL x[i]; 

  ORs{i=Onodes}: OR{j=nodes | arcs[j,i]}  x[j]  IMPL x[i]; 

MINIMIZE c: SUM{i=hopotheses} cost[i]*x[i]; 

END 

 

LPL translates this formulation automatically into a MIP-problem as described 

in Santos [1994]. 
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