Contents
 1 Introduction
 2 (Algebraic) Modeling Languages
  2.1 GAMS
   2.1.1 Coexisting Armies of Queens (coexx)
  2.2 AMPL
   2.2.1 Transshipment Problem with fixed costs (multmip1)
   2.2.2 Anti-Assignment Problem (balAssign0)
  2.3 LINDO/LINGO
   2.3.1 Data Envelopment Analysis (deamod)
  2.4 LocalSolver
   2.4.1 Capacitated Vehicle Routing Problem (cvrp2)
  2.5 MiniZinc
   2.5.1 Sudoku Puzzle (sudokuM)
   2.5.2 Light Up Puzzle (lightup1)
  2.6 AIMMS
   2.6.1 A non-transitive relation (dice)
  2.7 MOSEL
   2.7.1 A Tiny Planning Model (tiny-initial)
  2.8 OPL
   2.8.1 Multi-commodity Transportation (transp3)
  2.9 MATLAB
   2.9.1 Steel Blending (mixing)
  2.10 Other Modeling Language Tools
 3 Programming Languages
  3.1 Gurobipy (Python – commercial)
   3.1.1 Multi-commodity Flow (netflow)
   3.1.2 3d Tic-Tac-Toe (3d-tic-tac-toe)
   3.1.3 Non-negative Regression (regression1)
  3.2 OR-tools (Google)
   3.2.1 A Simple Nurse Scheduling (nurses)
  3.3 Pyomo (Python – open source)
   3.3.1 Warehouse Location (wl1)
   3.3.2 Warehouse Location (wl2)
   3.3.3 Rosenbrock Function (rosenbrock)
  3.4 Gecco/APMonitor (Python – open source)
   3.4.1 A Hock/Schittkowski model (hs71)
   3.4.2 Problem 8 from APMonitor (prob8)
  3.5 PuLP (Python – open source)
   3.5.1 A Sudoku Instance (sudokuP)
  3.6 Python-MIP (Python – open source)
   3.6.1 The n-Queens Problem (queens)
  3.7 JuMP (Julia – open source)
   3.7.1 Facility Location (facilityLoc)
   3.7.2 Urban Planning: A Puzzle (uplanning)
   3.7.3 The Passport Problem (passport)
  3.8 Other Programming Languages
   3.8.1 A small MIP model (mip1-c)
 4 Further Tools
 5 Conclusion
 References