
The 3-Jug Problem (jug)
—- Run LPL Code , HTML Document –
Problem: There are three jugs with capacities of 8, 5, and 3 liters. Initially the 8-liter jug is
full of water, whereas the others are empty. Find a sequence for pouring the water from one jug
to another such that the end result is to have 4 liters in the 8-liter jug and the other 4 liters in
the 5-liter jug. When pouring the water from a jug A into another jug B, either jug A must be
emptied or B must be filled, see Figure 1.

Figure 1: 3-Jug Problem

Modeling Steps

The problem can be formulated as a number of states and transitions between the states. A state
is a particular filling of the jugs, for instance, “the 8-liter jug contains 8 liters of water, the 5-liter
jug contains nothing, and the 3-liter jug contains nothing.” Each state can be represented by a
triple of numbers: (𝑥, 𝑦, 𝑧), where 𝑥 is the content of the 8-liter jug, 𝑦 is the content of the 5-liter
jug, and 𝑧 is the content of the 3-liter jug. So, (8, 0, 0) is the example just used before. We want
to reach the state (4, 4, 0). The capacities of the jug can also be represented by a triple: (8, 5, 3).
The first step is to enumerated all states. There are 216 potential states, namely, all states (𝑥, 𝑦, 𝑧)
with 0 ≤ 𝑥 ≤ 8, 0 ≤ 𝑦 ≤ 5, and 0 ≤ 𝑧 ≤ 3, which is 9 ⋅ 6 ⋅ 4 = 216. However, only states where
𝑥+ 𝑦+ 𝑧 = 8 are allowed (no water should be added or removed). Furthermore, at least one jug
must be full or empty – following the rules of pouring. This condition can be represented as a
Boolean expression as follows:

𝑥 = 0 ∨ 𝑥 = 8 ∨ 𝑦 = 0 ∨ 𝑦 = 5 ∨ 𝑧 = 0 ∨ 𝑧 = 3

There are 16 remaining possible states, they are:
{(0, 5, 3), (1, 4, 3), (1, 5, 2), (2, 3, 3), (2, 5, 1), (3, 2, 3), (3, 5, 0), (4, 1, 3),

(4, 4, 0), (5, 0, 3), (5, 3, 0), (6, 0, 2), (6, 2, 0), (7, 0, 1), (7, 1, 0), (8, 0, 0)}

The basic operation is to pour water from one jug A to another jug B in a way that either A is
emptied or B is filled. We are looking for the shortest sequence of operations that reaches the
state (4, 4, 0) starting with state (8, 0, 0). Such a basic operation is called a transition from one
state to another. The result is a (directed) graph. The problem now is reduced to find the shortest
(direct) path in this graph from state (8, 0, 0) to the state (4, 4, 0). The resulting graph and the
shortest path in red is given in Figure 2.

1

https://lpl.matmod.ch/lpl/Solver.jsp?name=/jug
https://lpl.matmod.ch/lpl/Solver.jsp?name=/jug
https://matmod.ch/lpl/HTML/jug.html

(0,5,3)

(1,4,3)

(1,5,2)

(2,3,3)

(2,5,1)

(3,2,3)

(3,5,0)

(4,1,3)(4,4,0)

(5,0,3)

(5,3,0)

(6,0,2)

(6,2,0)

(7,0,1)

(7,1,0)

(8,0,0)

Figure 2: Solution of the 3-Jug Problem

Further Comments: The model EnumerateStates returns all possible states and 𝑆𝑖 con-
tains all state names as strings. The most challenging is to calculated the transsitions 𝑒𝑖,𝑗 between
state 𝑖 and 𝑗: Let 𝑘 be a jug then 𝑘%𝑁 +11 is the next jug and (𝑘+1)%𝑁 +1 is the next but one.
A valid pouring from state 𝑖 to state 𝑗 for jug 𝑘%𝑁+1 to jug (𝑘+1)%𝑁+1 is defined as follows:
(1) not touching the jug 𝑘, (that is 𝑥𝑘,𝑖 = 𝑥𝑘,𝑗) and (2) either filling the jug (𝑘+1)%𝑁+1 of state 𝑗
(that is, 𝑥(𝑘+1)%𝑁+1,𝑗 = 𝐶(𝑘+1)%𝑁+1]) or emptying the jug 𝑘%𝑁+1 of state 𝑗 (that is, 𝑥𝑘%𝑁+1,𝑗 = 0).
Totally six of these conditions must hold, because there are six pouring possibilities with three
jugs. The conditions are implemented in the e{i,j}:=... statement.
Calling to function Graph.SPath returns the shortest path.

Listing 1: The Complete Model implemented in LPL [2]� �
model jug " The 3−Jug Problem ";

set k " S e t o f j u g s ";
i,j " The s e t o f s t a t e s ";

1Note: % is the modulo operator.

2

e{i,j} " T r a n s i t i o n l i n k s ";
p{i,j} " s h o r t e s t p a t h ";

parameter N " Number o f j u g s ";
T " T o t a l l i q u i d ";
C{k} " c a p a c i t i e s o f t h e j u g s ";
x{k,i} " t h e s t a t e s ";

string S{i} " S t a t e name ";
InitState " S t a r t i n g s t a t e ";
GoalState " A r r i v n g S t a t e ";

;EnumerateStates;
S{i}:='('&x[1,i]&','&x[2,i]&','&x[3,i]&')';
e{i,j}:= or{k} (
x[k,i]=x[k,j] and (x[k%N+1,j]=C[k%N+1] or x[(k+1)%N+1,j]=0) or
x[k,i]=x[k,j] and (x[k%N+1,j]=0 or x[(k+1)%N+1,j]=C[(k+1)%N+1]));

parameter s:=argmax{i} (S=InitState) " from ";
t:=argmax{i} (S=GoalState) " t o ";

if Graph.SPath(e,p,s,t)>=99999999 then Write('No path exists\n'); end
;

−−DrawGraph ;
DrawJug(8,0,0, 0,0);
DrawJug(4,4,0, 25,0);
Draw.Arrow(16,4,23,4,-2,0,3);
Draw.Text('Abstraction',15,-3.5,16,0,3,1.3);
parameter SPdraw{i}:=[16,7,6,13,12,3,2,9]; n;
parameter SPdraw1{i}:=[16,9];
{i|SPdraw1} (n:=n+1, Draw.Ellipse(S[SPdraw1],if(n>4,(n-4)*10-5,n

*25-17),if(n>4,-10,-6),3,1,1,0));
Draw.Arrow(16,-6,23,-6,-2,0,3);

/ ∗ { i | SPdraw } (n := n+1 , Draw . E l l i p s e (S [SPdraw] , i f (n >4 ,(n −4) ∗10 −5 ,n
∗10 −5) , i f (n >4 , −10 , −6) , 3 , 1 , 1 , 0)) ;

{p i n 1 . . 3 } Draw . Arrow (p∗10 −2 , −6 ,p ∗10+2 , −6) ;
{p i n 1 . . 3 } Draw . Arrow (p∗10 −2 , −10 ,p ∗10+2 , −10) ;
Draw . Line (40 −5 , −7 ,40 −5 , −8) ;
Draw . Line (40 −5 , −8 ,5 , −8) ;
Draw . Arrow (5 , −8 ,5 , −9) ;

∗ /
model data;
T:=8;
InitState:='(8,0,0)'; / / sum must be T
GoalState:='(4,4,0)'; / / sum must be T
N:=3;
k:=1..N;
C{k}:=[8,5,3];

end;
model EnumerateStates;
{a in 0..C[1],b in 0..C[2], c in 0..C[3]}

if(a+b+c=T and (a=0 or a=C[1] or b=0 or b=C[2] or c=0 or c=C[3]),
(Addm(i,#i+1), x[1,#i]:=a,x[2,#i]:=b,x[3,#i]:=c)

);
end
model DrawGraph;
parameter

PI:=3.14159;
xa{i}:=15*Sin(PI/#i+2*PI*(i-1)/#i);
ya{i}:=15*Cos(PI/#i+2*PI*(i-1)/#i);

Draw.Scale(15,15);
Draw.DefFont('Verdana',10);
{e[i,j]} Draw.Arrow(xa[i],ya[i],xa[j],ya[j],2);

3

−−{p [i , j] } Draw . Arrow (xa [j] , ya [j] , xa [i] , ya [i] , 2 , 3 , 3) ;
{i}Draw.Ellipse(S,xa,ya,2,1,1,0);

end
model DrawJug(integer a;b;c; x;y);
Draw.Scale(10,-15);
Draw.DefFont('Verdana',12);
model oneJug(integer h;a; x;y);

Draw.Ellipse(x+2,y,2,.5,if(a>0,5,1),0);
Draw.Rect(x,y,4,1,1,1);
if a>0 then

Draw.Rect(x,y,4,y+a,5,5);
Draw.Ellipse(x+2,a,2,.5,5,1);

end;
Draw.Ellipse(x+2,h,2,.5,1,0));
Draw.Line(x,h,x,0);
Draw.Line(x+4,h,x+4,0);
Draw.Text(h&'L',x+1.5,-1.3);
Draw.Text(a&'L',x+1.5,1);

end;
oneJug(8,a,x,y);
oneJug(5,b,x+5,y);
oneJug(3,c,x+10,y);

end
end� �

Questions

1. Vary the problem: Try, for example:
T:=9; InitState:='(8,1,0)'; GoalState:='(2,5,2)';

Or try this:
T:=10; InitState:='(10,0,0)'; GoalState:='(3,4,3)';
C{k}:=[10 5 3];

2. Try also this : (what happens?)
T:=12; InitState:='(10,2,0)'; GoalState:='(5,6,1)';
C{k}:=[12 6 3];

3. Another shorter formulation of the jug problem is: jugA2.

Answers

1. Just modify the model correspondingly and run again. The nice example to introduce your
children to graph

2. No path exists between these two states.

2https://lpl.matmod.ch/lpl/Solver.jsp?name=/jugA

4

https://matmod.ch/lpl/HTML/jugA.html

References
[1] MatMod. Homepage for Learning Mathematical Modeling : https://matmod.ch.
[2] Hürlimann T. Reference Manual for the LPL Modeling Language, most recent version.

https://matmod.ch/lpl/doc/manual.pdf.

5

https://matmod.ch
https://matmod.ch/lpl/doc/manual.pdf

