The 3-Jug Problem (jug)

—— Run LPL Code , HTML Document -

Problem: There are three jugs with capacities of 8 , 5 , and 3 liters. Initially the 8 -liter jug is full of water, whereas the others are empty. Find a sequence for pouring the water from one jug to another such that the end result is to have 4 liters in the 8 -liter jug and the other 4 liters in the 5 -liter jug. When pouring the water from a jug A into another jug B, either jug A must be emptied or B must be filled, see Figure 1.

Figure 1: 3-Jug Problem

Modeling Steps

The problem can be formulated as a number of states and transitions between the states. A state is a particular filling of the jugs, for instance, "the 8 -liter jug contains 8 liters of water, the 5 -liter jug contains nothing, and the 3 -liter jug contains nothing." Each state can be represented by a triple of numbers: (x, y, z), where x is the content of the 8 -liter jug, y is the content of the 5 -liter jug, and z is the content of the 3 -liter jug. So, $(8,0,0)$ is the example just used before. We want to reach the state $(4,4,0)$. The capacities of the jug can also be represented by a triple: $(8,5,3)$. The first step is to enumerated all states. There are 216 potential states, namely, all states (x, y, z) with $0 \leq x \leq 8,0 \leq y \leq 5$, and $0 \leq z \leq 3$, which is $9 \cdot 6 \cdot 4=216$. However, only states where $x+y+z=8$ are allowed (no water should be added or removed). Furthermore, at least one jug must be full or empty - following the rules of pouring. This condition can be represented as a Boolean expression as follows:

$$
x=0 \vee x=8 \vee y=0 \vee y=5 \vee z=0 \vee z=3
$$

There are 16 remaining possible states, they are:

$$
\begin{aligned}
& \{(0,5,3),(1,4,3),(1,5,2),(2,3,3),(2,5,1),(3,2,3),(3,5,0),(4,1,3) \\
& (4,4,0),(5,0,3),(5,3,0),(6,0,2),(6,2,0),(7,0,1),(7,1,0),(8,0,0)\}
\end{aligned}
$$

The basic operation is to pour water from one jug A to another jug B in a way that either A is emptied or B is filled. We are looking for the shortest sequence of operations that reaches the state $(4,4,0)$ starting with state $(8,0,0)$. Such a basic operation is called a transition from one state to another. The result is a (directed) graph. The problem now is reduced to find the shortest (direct) path in this graph from state $(8,0,0)$ to the state $(4,4,0)$. The resulting graph and the shortest path in red is given in Figure 2.

Figure 2: Solution of the 3-Jug Problem

Further Comments: The model EnumerateStates returns all possible states and S_{i} contains all state names as strings. The most challenging is to calculated the transsitions $e_{i, j}$ between state i and j : Let k be a jug then $k \% N+1^{1}$ is the next jug and $(k+1) \% N+1$ is the next but one. A valid pouring from state i to state j for jug $k \% N+1$ to jug $(k+1) \% N+1$ is defined as follows: (1) not touching the jug k, (that is $x_{k, i}=x_{k, j}$) and (2) either filling the jug $(k+1) \% N+1$ of state j (that is, $x_{(k+1) \% N+1, j}=C_{(k+1) \% N+1]}$) or emptying the jug $k \% N+1$ of state j (that is, $x_{k \% N+1, j}=0$). Totally six of these conditions must hold, because there are six pouring possibilities with three jugs. The conditions are implemented in the $\mathrm{e}\{\mathrm{i}, \mathrm{j}\}:=\ldots$ statement.

Calling to function Graph. SPath returns the shortest path.
Listing 1: The Complete Model implemented in LPL [2]

```
model jug "The 3-Jug Problem";
    set k "Set of jugs";
        i,j "The set of states";
```

[^0]```
 e{i,j} "Transition links";
 p{i,j} "shortest path";
parameter N "Number of jugs";
 T "Total liquid";
 C{k} "capacities of the jugs";
 x{k,i} "the states";
string S{i} "State name";
 InitState "Starting state";
 GoalState "Arrivng State";
 ; EnumerateStates;
 S{i}:='('&x[1,i]&','&x[2,i]&','&x[3,i]&')';
 e{i,j}:= or{k} (
 x[k,i]=x[k,j] and (x[k%N+1,j]=C[k%N+1] or x[(k+1)%N+1,j]=0) or
 x[k,i]=x[k,j] and (x[k%N+1,j]=0 or x[(k+1) %N+1,j]=C[(k+1) %N+1]));
 parameter s:=argmax{i} (S=InitState) "from";
 t:=argmax{i} (S=GoalState) "to";
 if Graph.SPath(e,p,s,t)>=99999999 then Write('No_path_exists\n'); end
 ;
 _-DrawGraph;
 DrawJug(8,0,0, 0,0);
 DrawJug(4,4,0, 25,0);
 Draw.Arrow (16, 4, 23, 4, -2, 0, 3);
 Draw.Text('Abstraction',15,-3.5,16,0,3,1.3);
 parameter SPdraw{i}:=[16,7,6,13,12,3,2,9]; n;
 parameter SPdraw1{i}:=[16,9];
 {i|SPdraw1} (n:=n+1, Draw.Ellipse(S[SPdraw1],if(n>4,(n-4)*10-5,n
 * 25-17),if(n>4,-10,-6), 3,1,1,0));
 Draw.Arrow (16,-6, 23,-6,-2,0,3);
/* {i|SPdraw } (n:=n+1, Draw. Ellipse(S[SPdraw],if (n>4,(n-4)*10-5,n
 * 10-5), if (n>4,-10, -6),3,1,1,0));
 {p in 1..3} Draw.Arrow (p*10-2,-6,p*10+2,-6);
 {p in 1..3} Draw. Arrow (p*10-2,-10,p*10+2, -10);
 Draw. Line(40-5, -7,40-5, -8);
 Draw. Line(40-5, -8,5, -8);
 Draw. Arrow (5, -8,5, -9);
 model data;
 T:=8;
 InitState:='(8,0,0)'; // sum must be T
 GoalState:='(4,4,0)'; //sum must be T
 N:=3;
 k:=1..N;
 C{k}:=[8,5,3];
 end;
 model EnumerateStates;
 {a in 0..C[1],b in 0..C[2], c in O..C[3]}
 if(a+b+c=T and (a=0 or a=C[1] or b=0 or b=C[2] or c=0 or c=C [3]),
 (Addm(i,#i+1), x[1,#i]:=a,x[2,#i]:=b,x[3,#i]:=c)
) ;
 end
 model DrawGraph;
 parameter
 PI:=3.14159;
 xa{i}:=15*Sin(PI/#i+2*PI*(i-1)/#i);
 ya{i}:=15*Cos(PI/#i+2*PI*(i-1)/#i);
 Draw.Scale(15,15);
 Draw.DefFont('Verdana',10);
 {e[i,j]} Draw.Arrow(xa[i],ya[i],xa[j],ya[j],2);
```

*/

```
 --{p[i,j]} Draw.Arrow(xa[j],ya[j],xa[i],ya[i],2,3,3);
 {i}Draw.Ellipse(S,xa,ya,2,1,1,0);
 end
 model DrawJug(integer a;b;c; x;y);
 Draw.Scale(10,-15);
 Draw.DefFont('Verdana',12);
 model oneJug(integer h;a; x;y);
 Draw.Ellipse(x+2,y,2,.5,if(a>0,5,1),0);
 Draw.Rect(x,y,4,1,1,1);
 if a>0 then
 Draw.Rect(x,y,4,y+a,5,5);
 Draw.Ellipse(x+2,a,2,.5,5,1);
 end;
 Draw.Ellipse(x+2,h,2,.5,1,0));
 Draw.Line(x,h,x,0);
 Draw.Line(x+4,h,x+4,0);
 Draw.Text(h&'L',x+1.5,-1.3);
 Draw.Text(a&'L',x+1.5,1);
 end;
 oneJug(8,a,x,y);
 oneJug(5,b,x+5,y);
 oneJug(3, c, x+10,y);
 end
end
```

Questions

1. Vary the problem: Try, for example:
| $\mathrm{T}:=9$; InitState: =' $(8,1,0)$ '; GoalState:=' $(2,5,2)$ ';
Or try this:
```
T:=10; InitState:='(10,0,0)'; GoalState:='(3,4,3)';
C{k}:=[10 5 3];
```

2. Try also this: (what happens?)
```
T:=12; InitState:='(10,2,0)'; GoalState:='(5,6,1)';
C{k}:=[lll 6 3}]\mp@code{12
```

3. Another shorter formulation of the jug problem is: jugA ${ }^{2}$.

## Answers

1. Just modify the model correspondingly and run again. The nice example to introduce your children to graph
2. No path exists between these two states.
[^1]
## References

[1] MatMod. Homepage for Learning Mathematical Modeling : https://matmod.ch.
[2] Hürlimann T. Reference Manual for the LPL Modeling Language, most recent version. https://matmod.ch/lpl/doc/manual.pdf.


[^0]:    ${ }^{1}$ Note: $\%$ is the modulo operator.

[^1]:    ${ }^{2}$ https://lpl.matmod.ch/lpl/Solver.jsp?name=/jugA

